Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16844, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803074

RESUMO

Thyroid cancer is the most common endocrine malignancy, affecting nearly 600,000 new patients worldwide. Treatment with the BRAF inhibitor sorafenib partially prolongs progression-free survival in thyroid cancer patients, but fails to improve overall survival. This study examines enhancing sorafenib efficacy by combination therapy with the novel HSP90 inhibitor onalespib. In vitro efficacy of sorafenib and onalespib monotherapy as well as in combination was assessed in papillary (PTC) and anaplastic (ATC) thyroid cancer cells using cell viability and colony formation assays. Migration potential was studied in wound healing assays. The in vivo efficacy of sorafenib and onalespib therapy was evaluated in mice bearing BHT-101 xenografts. Sorafenib in combination with onalespib significantly inhibited PTC and ATC cell proliferation, decreased metabolic activity and cancer cell migration. In addition, the drug combination approach significantly inhibited tumor growth in the xenograft model and prolonged the median survival. Our results suggest that combination therapy with sorafenib and onalespib could be used as a new therapeutic approach in the treatment of thyroid cancer, significantly improving the results obtained with sorafenib as monotherapy. This approach has the potential to reduce treatment adaptation while at the same time providing therapeutic anti-cancer benefits such as reducing tumor growth and metastatic potential.


Assuntos
Antineoplásicos , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Glândula Tireoide/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Proliferação de Células , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral
2.
Front Oncol ; 10: 1717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014851

RESUMO

RATIONAL: cMet is abnormally regulated in gastrointestinal cancer, and is associated with increased invasiveness of the disease and poor overall survival. There are indications that targeted therapy against cMet, alone or in combination with additional cancer therapies, can help improve treatment outcome. Thus, in the present study we investigated the therapeutic efficacy of a novel cMet-targeting antibody therapy in gastrointestinal cancer models, and assessed potential augmenting effects in combination with tyrosine kinase inhibitor (TKI) targeted therapy or radiotherapy. METHODS: Three different cMet-targeting antibodies were first characterized with respect to antigen binding and effects on cell viability in vitro. The best performing candidate seeMet 12 was then further assessed for effects on colorectal cancer cell growth, proliferation and migration. Combinations with the TKI-inhibitor sorafenib or external beam radiotherapy were then evaluated for potential additive or synergistic effects in vitro using monolayer- and multicellular tumor spheroid assays. Finally, the combination of seeMet 12 and radiotherapy was evaluated in vivo in a proof-of-concept colorectal cancer xenograft study. RESULTS: Dose-dependent therapeutic effects were demonstrated for all three cMet-targeting antibodies. Monotherapy using seeMet 12 resulted in impaired cellular migration/proliferation and reduced tumor spheroid growth. Moreover, seeMet 12 was able to potentiate therapeutic effects in vitro for both sorafenib and radiotherapy treatments. Finally, the in vivo therapy study demonstrated promising results, where a combination of seeMet 12 and fractionated radiotherapy increased median survival by 79% compared to radiotherapy alone, and tripled maximum survival. CONCLUSION: The novel anti-cMet antibody seeMet 12 demonstrated therapeutic effects in cMet positive gastrointestinal cancer cells in vitro. Moreover, the addition of seeMet 12 augmented the effects of sorafenib and radiotherapy. An in vivo proof-of-concept study of seeMet 12 and radiotherapy further validated the results. Thus, cMet-targeted therapy should be further explored as a promising approach to increase therapeutic effects, circumvent treatment resistance, and reduce side effects.

3.
Front Oncol ; 10: 532285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102211

RESUMO

RATIONAL: Cisplatin based cancer therapy is an affordable and effective standard therapy for several solid cancers, including lung, ovarian and head and neck cancers. However, the clinical use of cisplatin is routinely limited by the development of drug resistance and subsequent therapeutic failure. Therefore, methods of circumventing cisplatin resistance have the potential to increase therapeutic efficiency and dramatically increase overall survival. Cisplatin resistance can be mediated by alterations to the DNA damage response, where multiple components of the repair machinery have been described to be client proteins of HSP90. In the present study, we have investigated whether therapy with the novel HSP90 inhibitor onalespib can potentiate the efficacy of cisplatin and potentially reverse cisplatin resistance in ovarian and head and neck cancer cells. METHODS: Cell viability, cancer cell proliferation and migration capacity were evaluated in vitro on models of ovarian and head and neck cancer cells. Western blotting was used to assess the downregulation of HSP90 client proteins and alterations in downstream signaling proteins after exposure to cisplatin and/or onalespib. Induction of apoptosis and DNA damage response were evaluated in both monotherapy and combination therapy groups. RESULTS: Results demonstrate that onalespib enhances the efficiency of cisplatin in a dose-dependent manner. Tumor cells treated with both drugs displayed lower viability and a decreased migration rate compared to vehicle-control cells and cells treated with individual compounds. An increase of DNA double strand breaks was observed in both cisplatin and onalespib treated cells. The damage was highest and most persistent in the combination group, delaying the DNA repair machinery. Further, the cisplatin and onalespib co-treated cells had greater apoptotic activity compared to controls. CONCLUSION: The results of this study demonstrate that the reduced therapeutic efficacy of cisplatin due to drug-resistance could be overcome by combination treatment with onalespib. We speculate that the increased apoptotic signaling, DNA damage as well as the downregulation of HSP90 client proteins are important mechanisms promoting increased sensitivity to cisplatin treatment.

4.
Sci Rep ; 10(1): 5923, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246062

RESUMO

Oncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


Assuntos
Benzamidas/farmacologia , Quimiorradioterapia/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoindóis/farmacologia , Neoplasias/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzamidas/uso terapêutico , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HCT116 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoindóis/uso terapêutico , Camundongos , Neoplasias/patologia , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Oncol ; 9: 923, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616635

RESUMO

The tumor suppressor p53 is a key mediator of cellular stress and DNA damage response cascades and is activated after exposure to ionizing radiation. Amplifying wild-type p53 expression by targeting negative regulators such as MDM2 in combination with external beam radiotherapy (EBRT) may result in increased therapeutic effects. The novel stapled peptide PM2 prevents MDM2 from suppressing wild-type p53, and is thus a promising agent for therapeutic combination with EBRT. Effects of PM2 and potential PM2-induced radiosensitivity were assessed in a panel of cancer cell lines using 2D cell viability assays. Western Blot and flow cytometric analyses were used to investigate the mechanisms behind the observed effects in samples treated with PM2 and EBRT. Finally, PM2-treatment combined with EBRT was evaluated in an in vitro 3D spheroid model. PM2-therapy decreased cell viability in wild-type p53, HPV-negative cell lines. Western Blotting and flow cytometry confirmed upregulation of p53, as well as initiation of p53-mediated apoptosis measured by increased cleaved caspase-3 and Noxa activity. Furthermore, 3D in vitro tumor spheroid experiments confirmed the superior effects of the combination, as the only treatment regime resulting in growth inhibition and complete spheroid disintegration. We conclude that PM2 induces antitumorigenic effects in wt p53 HPV-negative cancer cells and potentiates the effects of EBRT, ultimately resulting in tumor eradication in a 3D spheroid model. This strategy shows great potential as a new wt p53 specific tumor-targeting compound, and the combination of PM2 and EBRT could be a promising strategy to increase therapeutic effects and decrease adverse effects from radiotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...