Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 23(1): e202100583, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34495572

RESUMO

The acid-base character of oxide supports is crucial for catalytic reactions. In this work, the acid-base properties of five oxide surfaces common in heterogeneous catalysis were investigated and related to their interaction with monolignol compounds derived from lignin. We have used density functional theory simulations also to understand the role of the surfaces' hydroxylation state. The results show that moderate hydroxyl coverage on the amphoteric γ-Al2 O3 (110) slightly strengthens the oxy-compounds' adsorption due to an increase in Lewis acidity. Similarly, low hydroxyl coverage on the reducible TiO2 (101) enlarges its adsorption capacity by up to 42 % compared with its clean surface. The higher affinity is attributed to the more favourable interaction between the surface-OH groups and the aromatic rings. Overall, the results indicate that hydroxyl coverage enhances the amphoteric and reducible adsorption capacity towards aromatic species.


Assuntos
Guaiacol , Óxidos , Adsorção , Catálise , Lignina
2.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20200056, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32623992

RESUMO

Circular economy emphasizes the idea of transforming products involving economic growth and improving the ecological system to reduce the negative consequences caused by the excessive use of raw materials. This can be achieved with the use of second-generation biomass that converts industrial and agricultural wastes into bulk chemicals. The use of catalytic processes is essential to achieve a viable upgrade of biofuels from the lignocellulosic biomass. We carried out density functional theory calculations to explore the relationship between 13 transition metals (TMs) properties, as catalysts, and their affinity for hydrogen and oxygen, as key species in the valourization of biomass. The relation of these parameters will define the trends of the hydrodeoxygenation (HDO) process on biomass-derived compounds. We found the hydrogen and oxygen adsorption energies in the most stable site have a linear relation with electronic properties of these metals that will rationalize the surface's ability to bind the biomass-derived compounds and break the C-O bonds. This will accelerate the catalyst innovation for low temperature and efficient HDO processes on biomass derivates, e.g. guaiacol and anisole, among others. Among the monometallic catalysts explored, the scaling relationship pointed out that Ni has a promising balance between hydrogen and oxygen affinities according to the d-band centre and d-band width models. The comparison of the calculated descriptors to the adsorption strength of guaiacol on the investigated surfaces indicates that the d-band properties alone are not best suited to describe the trend. Instead, we found that a linear combination of work function and d-band properties gives significantly better correlation. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...