Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HortScience ; 35(1): 46-8, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11725789

RESUMO

Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.


Assuntos
Arachis/crescimento & desenvolvimento , Sistemas Ecológicos Fechados , Umidade , Hidroponia , Biomassa , Meios de Cultura , Ambiente Controlado , Indanos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Voo Espacial
2.
HortScience ; 35(1): 49-52, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11725790

RESUMO

The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.


Assuntos
Arachis/efeitos dos fármacos , Arachis/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Sistemas Ecológicos Fechados , Hidroponia , Biomassa , Meios de Cultura , Relação Dose-Resposta a Droga , Ambiente Controlado , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
3.
HortScience ; 33(7): 1147-9, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11795324

RESUMO

'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.


Assuntos
Arachis/crescimento & desenvolvimento , Hidroponia/métodos , Ipomoea batatas/crescimento & desenvolvimento , Biomassa , Sistemas Ecológicos Fechados , Sistemas de Manutenção da Vida , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
4.
Adv Space Res ; 20(10): 1805-13, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-11542554

RESUMO

Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of 'Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of 'TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.


Assuntos
Biomassa , Hidroponia/métodos , Lactuca/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Solanaceae/efeitos dos fármacos , Eliminação de Resíduos Líquidos , Biodegradação Ambiental , Reatores Biológicos , Contagem de Colônia Microbiana , Meios de Cultura/farmacologia , Meios de Cultura/toxicidade , Ambiente Controlado , Lactuca/crescimento & desenvolvimento , Lactuca/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Microbiologia do Solo , Solanaceae/crescimento & desenvolvimento , Solanaceae/microbiologia , Microbiologia da Água
5.
Adv Space Res ; 20(10): 1905-8, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-11542568

RESUMO

Three peanut cultivars, 'Florunner,' 'Georgia Red,' and 'New Mexico,' were grown in reach-in chambers to determine response to CO2 enrichment. CO2 treatments were ambient (400 micromol mol-1) and 700 micromol mol-1. Growth chamber conditions included 700 micromol m-2 s-1 photosynthetic photon flux (PPF), 28/22C, 7O% RH, and 12/12 h photoperiod. Growth media consisted of a 1:1 mixture (v/v) of vermiculite and sterilized sand. Six 10 L pots of each cultivar were fertilized three times per week with 250 mL of nutrient solution containing additional Ca (10 mM) and NO3 (25 mM) and watered well. Beginning 21 days after planting (DAP) and every three weeks thereafter up to 84 days, the second leaf from the growing axis (main stem) was detached to determine CO2 effect on leaf area, specific leaf area (SLA) and dry weight. Plants were harvested 97 DAP, at which time total leaf area, leaf number, plant and root weights and pod production data were taken. Numbers of pods per plant, pod fresh and dry weights, fibrous root and plant dry weights were higher for all cultivars grown at 700 micromol mol-1 than at ambient CO2. Also, leaf area for all cultivars was larger with CO2 enrichment than at ambient. SLA tended to decline with time regardless of CO2 treatment. Percentage of total sound mature kernels (%TSMK) was similar for both treatments. Plants grown at 700 micromol mol-1 CO2 had slightly more immature pods and seeds at final harvest.


Assuntos
Arachis/efeitos dos fármacos , Biomassa , Dióxido de Carbono/farmacologia , Folhas de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Arachis/genética , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Dióxido de Carbono/metabolismo , Sistemas Ecológicos Fechados , Ambiente Controlado , Fótons , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
6.
Adv Space Res ; 14(11): 277-80, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11540193

RESUMO

Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and 'TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 degrees C and diurnal 28:22 degrees C day:night) and different CO2 levels (ambient, 400, 1000 and 10000 microliters/L--400, 1000 and 10000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were produced for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 degrees C. For the same photoperiod, when a 28:22 degrees C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod, 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 degrees C diurnal temperature variation than with a constant 28 degrees C temperature regime. Preliminary results with both 'Ga Jet' and 'TI 155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1000, and 10000 microliters/L.


Assuntos
Dióxido de Carbono/metabolismo , Luz , Fotoperíodo , Solanaceae/crescimento & desenvolvimento , Temperatura , Biomassa , Dióxido de Carbono/farmacologia , Escuridão , Sistemas Ecológicos Fechados , Ambiente Controlado , Umidade , Hidroponia , Transpiração Vegetal , Solanaceae/efeitos dos fármacos , Solanaceae/efeitos da radiação
7.
Adv Space Res ; 12(5): 125-31, 1992.
Artigo em Inglês | MEDLINE | ID: mdl-11537058

RESUMO

Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.


Assuntos
Arachis/crescimento & desenvolvimento , Hidroponia , Sistemas de Manutenção da Vida , Solanum tuberosum/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Biomassa , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...