Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591036

RESUMO

Automatic identification and sorting of livestock organs in the meat processing industry could reduce costs and improve efficiency. Two hyperspectral sensors encompassing the visible (400-900 nm) and short-wave infrared (900-1700 nm) spectra were used to identify the organs by type. A total of 104 parenchymatous organs of cattle and sheep (heart, kidney, liver, and lung) were scanned in a multi-sensory system that encompassed both sensors along a conveyor belt. Spectral data were obtained and averaged following manual markup of three to eight regions of interest of each organ. Two methods were evaluated to classify organs: partial least squares discriminant analysis (PLS-DA) and random forest (RF). In addition, classification models were obtained with the smoothed reflectance and absorbance and the first and second derivatives of the spectra to assess if one was superior to the rest. The in-sample accuracy for the visible, short-wave infrared, and combination of both sensors was higher for PLS-DA compared to RF. The accuracy of the classification models was not significantly different between data pre-processing methods or between visible and short-wave infrared sensors. Hyperspectral sensors, particularly those in the visible spectrum, seem promising to identify organs from slaughtered animals which could be useful for the automation of quality and process control in the food supply chain, such as in abattoirs.


Assuntos
Imageamento Hiperespectral , Gado , Animais , Bovinos , Análise Discriminante , Análise dos Mínimos Quadrados , Ovinos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
J Xray Sci Technol ; 25(3): 323-339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28157116

RESUMO

BACKGROUND: Non-intrusive inspection systems based on X-ray radiography techniques are routinely used at transport hubs to ensure the conformity of cargo content with the supplied shipping manifest. As trade volumes increase and regulations become more stringent, manual inspection by trained operators is less and less viable due to low throughput. Machine vision techniques can assist operators in their task by automating parts of the inspection workflow. Since cars are routinely involved in trafficking, export fraud, and tax evasion schemes, they represent an attractive target for automated detection and flagging for subsequent inspection by operators. OBJECTIVE: Development and evaluation of a novel method for the automated detection of cars in complex X-ray cargo imagery. METHODS: X-ray cargo images from a stream-of-commerce dataset were classified using a window-based scheme. The limited number of car images was addressed by using an oversampling scheme. Different Convolutional Neural Network (CNN) architectures were compared with well-established bag of words approaches. In addition, robustness to concealment was evaluated by projection of objects into car images. RESULTS: CNN approaches outperformed all other methods evaluated, achieving 100% car image classification rate for a false positive rate of 1-in-454. Cars that were partially or completely obscured by other goods, a modus operandi frequently adopted by criminals, were correctly detected. CONCLUSIONS: We believe that this level of performance suggests that the method is suitable for deployment in the field. It is expected that the generic object detection workflow described can be extended to other object classes given the availability of suitable training data.


Assuntos
Automóveis , Aprendizado de Máquina , Intensificação de Imagem Radiográfica/métodos , Radiografia/métodos , Medidas de Segurança , Humanos
3.
J Xray Sci Technol ; 25(1): 33-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27802247

RESUMO

We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Medidas de Segurança , Terrorismo/prevenção & controle , Meios de Transporte/normas , Raios X
4.
J Xray Sci Technol ; 25(1): 57-77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27802248

RESUMO

BACKGROUND: Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise. However, due to the scale (∼5 m tall) of such systems, they can be mechanically unstable, causing the imaging array to wobble during a scan. This leads to an effective loss of precision in the captured image. OBJECTIVE: We consider the measurement of wobble and amelioration of the consequent loss of image precision. METHODS: Following our previous work, we use Beam Position Detectors (BPDs) to measure the cross-sectional profile of the X-ray beam, allowing for estimation, and thus correction, of wobble. We propose: (i) a model of image formation with a wobbling detector array; (ii) a method of wobble correction derived from this model; (iii) methods for calibrating sensor sensitivities and relative offsets; (iv) a Random Regression Forest based method for instantaneous estimation of detector wobble; and (v) using these estimates to apply corrections to captured images of difficult scenes. RESULTS: We show that these methods are able to correct for 87% of image error due wobble, and when applied to difficult images, a significant visible improvement in the intensity-windowed image quality is observed. CONCLUSIONS: The method improves the precision of wobble affected images, which should help improve detection of threats and the identification of different materials in the image.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Medidas de Segurança , Tecnologia Radiológica/métodos , Terrorismo/prevenção & controle , Artefatos , Meios de Transporte/normas , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...