Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 44942-44954, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046318

RESUMO

Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g-1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g-1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.

2.
Bioinspir Biomim ; 16(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33530070

RESUMO

This study examined natural composite structures within the remarkably strong exoskeleton of the southwestern ironclad beetle (Z. haldemani). Structural and nanomechanical analyses revealed that the exoskeleton's extraordinary resistance to external forces is provided by its exceptional thickness and multi-layered structure, in which each layer performed a distinct function. In detail, the epicuticle, the outmost layer, comprised 3%-5% of the overall thickness with reduced Young's moduli of 2.2-3.2 GPa, in which polygonal-shaped walls (2-3µm in diameter) were observed on the surface. The next layer, the exocuticle, consisted of 17%-20% of the total thickness and exhibited the greatest Young's moduli (∼15 GPa) and hardness (∼800 MPa) values. As such, this layer provided the bulk of the mechanical strength for the exoskeleton. While the endocuticle spanned 70%-75% of the total thickness, it contained lower moduli (∼8-10 GPa) and hardness (∼400 MPa) values than the exocuticle. Instead, this layer may provide flexibility through its specifically organized chitin fiber layers, known as Bouligand structures. Nanoindentation testing further reiterated that the various fibrous layer orientations resulted in different elastic moduli throughout the endocuticle's cross-section. Additionally, this exoskeleton prevented delamination within the composite materials by overlapping approximately 5%-19% of each fibrous stack with neighboring layers. Finally, the innermost layer, the epidermis contributing 5%-7 % of the total thickness, contains attachment sites for muscle and soft tissue that connect the exoskeleton to the beetle. As such, it is the softest region with reduced Young's modulus of ∼2-3 GPa and hardness values of ∼290 MPa. These findings can be applied to the development of innovative, fiber-reinforced composite materials.


Assuntos
Besouros , Exoesqueleto Energizado , Animais , Módulo de Elasticidade , Dureza
3.
IEEE Trans Med Imaging ; 39(9): 2760-2771, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32086203

RESUMO

The overall goal of this study is to employ quantitative magnetic resonance imaging (MRI) data to constrain a patient-specific, computational fluid dynamics (CFD) model of blood flow and interstitial transport in breast cancer. We develop image processing methodologies to generate tumor-related vasculature-interstitium geometry and realistic material properties, using dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted MRI (DW-MRI) data. These data are used to constrain CFD simulations for determining the tumor-associated blood supply and interstitial transport characteristics unique to each patient. We then perform a proof-of-principle statistical comparison between these hemodynamic characteristics in 11 malignant and 5 benign lesions from 12 patients. Significant differences between groups (i.e., malignant versus benign) were observed for the median of tumor-associated interstitial flow velocity ( P = 0.028 ), and the ranges of tumor-associated blood pressure (P = 0.016) and vascular extraction rate (P = 0.040). The implication is that malignant lesions tend to have larger magnitude of interstitial flow velocity, and higher heterogeneity in blood pressure and vascular extraction rate. Multivariable logistic models based on combinations of these hemodynamic data achieved excellent differentiation between malignant and benign lesions with an area under the receiver operator characteristic curve of 1.0, sensitivity of 1.0, and specificity of 1.0. This image-based model system is a fundamentally new way to map flow and pressure fields related to breast tumors using only non-invasive, clinically available imaging data and established laws of fluid mechanics. Furthermore, the results provide preliminary evidence for this methodology's utility for the quantitative characterization of breast cancer.


Assuntos
Neoplasias da Mama , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Feminino , Hemodinâmica , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
J Chem Phys ; 149(5): 054703, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089374

RESUMO

We investigate computationally the role of Stone-Wales (SW) defects on the interfacial interactions among graphene, carbon nanotubes (CNTs), and Nylon 6 using density functional theory (DFT) and the empirical force-field. Our first-principles DFT calculations were performed using the Quantum ESPRESSO electronic structure code with the highly accurate van der Waals functional (vdW-DF2). Both pristine and SW-defected carbon nanomaterials were investigated. The computed results show that the presence of SW defects on CNTs weakens the CNT-graphene interactions. Our result that CNT-graphene interaction is much stronger than CNT-CNT interaction indicates that graphene would be able to promote the dispersion of CNTs in the polymer matrix. Our results demonstrate that carbon nanomaterials form stable complexes with Nylon 6 and that the van der Waals interactions, as revealed by the electronic charge density difference maps, play a key stabilizing role on the interfacial interactions among graphene, CNTs, and Nylon 6. Using the density of states calculations, we observed that the bandgaps of graphene and CNTs were not significantly modified due to their interactions with Nylon 6. The Young's moduli of complexes were found to be the averages of the moduli of their individual constituents.

5.
Data Brief ; 13: 180-186, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28616449

RESUMO

This article presents the strain-based experimental data for Ti-6Al-4V ELI under non-constant amplitude cyclic loading. Uniaxial strain-controlled fatigue experiments were conducted under three different loading conditions, including two-level block loading (i.e. high-low and low-high), periodic overload, and variable amplitude loading. Tests were performed under fully-reversed, and mean strain/stress conditions. For each test conducted, two sets of data were collected; the cyclic stress-strain response (i.e. hysteresis loops) in log10 increments, and the peak and valley values of stress and strain for each cycle. Residual fatigue lives are reported for tests with two-level block loading, while for periodic overload and variable amplitude experiments, fatigue lives are reported in terms of number of blocks to failure.

6.
J Mater Chem B ; 5(48): 9522-9531, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264567

RESUMO

The United Nations (UN) estimates that more than one billion people in this world do not have access to safe drinking water due to microbial hazards and it kills more than 7.6 million children every year via waterborne diseases. Driven by the need for the removal and inactivation of waterborne pathogens in drinking water, we report the chemical design and details of microscopic characterization of a bio-conjugated chitosan attached carbon nanotube based three dimensional (3D) nanoporous architecture, which has the capability for effective separation and complete disinfection of waterborne pathogens from environmental water samples. In the reported design, chitosan, a biodegradable antimicrobial polysaccharide with an architecture-forming ability has been used for the formation of 3D pores as channels for water passage, as well as to increase the permeability on the inner and outer architectures for killing Rotavirus and Shigella waterborne pathogens. On the other hand, due to their large surface area, CNTs have been wrapped by chitosan to enhance the adsorption capability of the architecture for the separation and removal of pathogens from water. The reported data show that the anti-Rotavirus VP7 antibody and LL-37 antimicrobial peptide conjugated chitosan-CNT architecture can be used for efficient separation, identification and 100% eradication of Rotavirus and Shigella waterborne pathogens from water samples of different sources. A detailed mechanism for the separation and inactivation of waterborne pathogens using the bio-conjugated chitosan based 3D architecture has been discussed using microscopic and spectroscopic studies. Reported experimental data demonstrate that the multifunctional bio-conjugated 3D architecture has good potential for use in waterborne pathogen separation and inactivation technology.

7.
Bioinspir Biomim ; 11(6): 066004, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27780157

RESUMO

In this study a woodpecker's hyoid apparatus was characterized to determine its impact mitigation mechanism using finite element (FE) analysis. The woodpecker's hyoid apparatus, comprising bone and muscle, has a unique geometry compared to those of other birds. The hyoid starts at the beak tip, surrounds the woodpecker's skull, and ends at the upper beak/front head intersection while being surrounded by muscle along the whole length. A FE model of the hyoid apparatus was created based on the geometry, microstructure, and mechanical properties garnered from our experimental measurements. We compared the impact mitigation capabilities of the hyoid apparatus with an idealized straight cylinder and a tapered cylinder. The results showed that the hyoid geometry mitigated a greater amount of pressure and impulse compared to the straight or tapered cylinders. The initially applied longitudinal wave lost its strength from attenuation and conversion to transverse shear waves. This is due to the spiral curvature and tapered geometry, which induced lateral displacement in the hyoid bone. The lateral displacement of the bony hyoid induced strains on the adjacent muscle, where the energy dissipated due to the muscle's viscoelasticity. Quantitatively, as the stress wave traveled from the anterior to the posterior end of the hyoid apparatus, its pressure decreased 75% and the associated impulse decreased 84%. The analysis of the woodpecker's hyoid apparatus provides a novel perspective on impact mitigation mediated by a spiral-shaped structure and viscoelastic biocomposite.


Assuntos
Bico/fisiologia , Materiais Biomiméticos , Osso Hioide/fisiologia , Passeriformes/fisiologia , Crânio/fisiologia , Estresse Fisiológico/fisiologia , Animais , Bico/anatomia & histologia , Fenômenos Biomecânicos/fisiologia , Dissecação/métodos , Dissecação/veterinária , Análise de Elementos Finitos , Osso Hioide/anatomia & histologia , Passeriformes/anatomia & histologia , Crânio/anatomia & histologia
8.
J Expo Sci Environ Epidemiol ; 26(1): 26-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26374657

RESUMO

Nanoscale ingredients in commercial products represent a point of emerging environmental concern due to recent findings that correlate toxicity with small particle size. A weight-of-evidence (WOE) approach based upon multiple lines of evidence (LOE) is developed here to assess nanomaterials as they exist in consumer product formulations, providing a qualitative assessment regarding the presence of nanomaterials, along with a baseline estimate of nanoparticle concentration if nanomaterials do exist. Electron microscopy, analytical separations, and X-ray detection methods were used to identify and characterize nanomaterials in sunscreen formulations. The WOE/LOE approach as applied to four commercial sunscreen products indicated that all four contained at least 10% dispersed primary particles having at least one dimension <100 nm in size. Analytical analyses confirmed that these constituents were comprised of zinc oxide (ZnO) or titanium dioxide (TiO2). The screening approaches developed herein offer a streamlined, facile means to identify potentially hazardous nanomaterial constituents with minimal abrasive processing of the raw material.


Assuntos
Nanopartículas/análise , Queimadura Solar/prevenção & controle , Protetores Solares/química , Titânio/análise , Óxido de Zinco/análise , Humanos , Tamanho da Partícula
9.
J Mech Behav Biomed Mater ; 53: 142-150, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26318574

RESUMO

Metallic tungsten (W) was initially assumed to be environmentally benign and a green alternative to lead. However, subsequent investigations showed that fishing weights and munitions containing elemental W can fragment and oxidize into complex monomeric and polymeric tungstate (WO4) species in the environment; this led to increased solubility and mobility in soils and increased bioaccumulation potential in plant and animal tissues. Here we expand on the results of our previous research, which examined tungsten toxicity, bioaccumulation, and compartmentalization into organisms, and present in this research that the bioaccumulation of W was related to greater than 50% reduction in the mechanical properties of the snail (Otala lactea), based on depth-sensing nanoindentation. Synchrotron-based X-ray fluorescence maps and X-ray diffraction measurements confirm the integration of W in newly formed layers of the shell matrix with the observed changes in shell biomechanical properties, mineralogical composition, and crystal orientation. With further development, this technology could be employed as a biomonitoring tool for historic metals contamination since unlike the more heavily studied bioaccumulation into soft tissue, shell tissue does not actively eliminate contaminants.


Assuntos
Exoesqueleto/metabolismo , Monitoramento Ambiental/métodos , Gastrópodes/metabolismo , Fenômenos Mecânicos , Nanotecnologia/métodos , Tungstênio/metabolismo , Exoesqueleto/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Dieta/efeitos adversos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Gastrópodes/anatomia & histologia , Gastrópodes/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Tungstênio/toxicidade
10.
J Mech Behav Biomed Mater ; 51: 388-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26301567

RESUMO

In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK.


Assuntos
Cetonas/química , Fenômenos Mecânicos , Polietilenoglicóis/química , Benzofenonas , Teste de Materiais , Modelos Teóricos , Polímeros , Estresse Mecânico
11.
J Mech Behav Biomed Mater ; 40: 375-389, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25300062

RESUMO

The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus.


Assuntos
Modelos Biológicos , Pele/química , Estresse Mecânico , Animais , Análise de Elementos Finitos , Peixes
12.
J Vis Exp ; (89)2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25046233

RESUMO

The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram's horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.


Assuntos
Peixes/anatomia & histologia , Animais , Tegumento Comum/anatomia & histologia , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Tomografia Computadorizada por Raios X
13.
Environ Sci Technol ; 47(19): 11258-67, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23971725

RESUMO

Although nanotechnology advancements should be fostered, the environmental health and safety (EHS) of nanoparticles used in technologies must be quantified simultaneously. However, most EHS studies assess the potential implications of the free nanoparticles which may not be directly applicable to the EHS of particles incorporated into in-use technologies. This investigation assessed the aquatic toxicological implications of copper oxide (CuO) nanospheres relative to CuO nanorods used in nanoenergetic applications to improve combustion. Particles were tested in both the as-received form and following combustion of a CuO/aluminum nanothermite. Results indicated nanospheres were more stable in water and slowly released ions, while higher surface area nanorods initially released more ions and were more toxic but generally less stable. After combustion, particles sintered into larger, micrometer-scale aggregates, which may lower toxicity potential to pelagic organisms due to deposition from water to sediment and reduced bioavailability after complexation with sediment organic matter. Whereas the larger nanothermite residues settled rapidly, implying lower persistence in water, their potential to release dissolved Cu was higher which led to greater toxicity to Ceriodaphnia dubia relative to parent CuO material (nanosphere or rod). This study illustrates the importance of considering the fate and toxicology of nanoparticles in context with their relevant in-use applications.


Assuntos
Óxido de Alumínio/toxicidade , Cobre/toxicidade , Nanosferas/toxicidade , Nanotubos/toxicidade , Óxido de Alumínio/química , Animais , Cladocera/efeitos dos fármacos , Cobre/química , Sulfato de Cobre/química , Sulfato de Cobre/toxicidade , Nanosferas/química , Nanotubos/química
14.
Philos Trans A Math Phys Eng Sci ; 365(1852): 715-32, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17244593

RESUMO

The study of turbulence near walls has experienced a renaissance in the last decade, largely owing to the availability of high-quality numerical simulations. The viscous and buffer layers over smooth walls are essentially independent of the outer flow, and there is a family of numerically exact nonlinear structures that account for about half of the energy production and dissipation. The rest can be modelled by their unsteady bursting. Many characteristics of the wall layer, such as the dimensions of the dominant structures, are well predicted by those models, which were essentially completed in the 1990s after the increase in computer power made the kinematic simulations of the late 1980s cheap enough to undertake dynamic experiments.Today, we are at the early stages of simulating the logarithmic (or overlap) layer, and a number of details regarding its global properties are becoming clear. For instance, a finite Reynolds number correction to the logarithmic law has been validated in turbulent channels. This has allowed upper and lower limits of the overlap region to be clarified, with both upper and lower bounds occurring at much larger distances from the wall than commonly assumed. A kinematic picture of the various cascades present in this part of the flow is also beginning to emerge. Dynamical understanding can be expected in the next decade.

15.
Tex Heart Inst J ; 32(3): 294-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16392208

RESUMO

Axial-flow ventricular assist devices (VADs) can be implanted either through a left thoracotomy with outflow-graft anastomosis to the descending thoracic aorta or through a midline sternotomy with anastomosis to the ascending aorta. Each method has advantages and disadvantages. Because these VADs produce nonpulsatile flow, their hemodynamic characteristics differ from those of pulsatile devices. These differences may have important clinical consequences, particularly in relation to the outflow-graft configuration. We describe a computer-generated flow model that we created to illustrate the flow dynamics and possible clinical consequences of each method. The simulations indicate that the location of the anastomosis has important qualitative effects on flow in the ascending aorta and aortic arch. At high VAD outputs (> or =75%), native cardiac output cannot supply the carotid and subclavian arteries. With a descending aortic anastomosis, net backward flow occurs in the descending aorta to supply these branches. Consequently, the aortic arch has a region with almost no net flow, where fluid particles stagnate over many cardiac cycles, possibly causing thrombogenesis. With an ascending aortic anastomosis, the arch has no stagnant region, although flow turbulence still occurs. When the aortic valve remains closed, so that the total output occurs through the VAD, the aortic root has a region of nearly stagnant flow. With an ascending aortic anastomosis, a small degree of recirculatory flow may prevent complete stagnation at the aortic root. With the descending aortic anastomosis, however, no recirculation occurs. These results help delineate the complex flow dynamics and the advantages and drawbacks of each technique.


Assuntos
Valva Aórtica/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Implantação de Prótese/instrumentação , Valva Aórtica/diagnóstico por imagem , Ecocardiografia Transesofagiana , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Desenho de Prótese , Toracotomia/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...