Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 979-983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232945

RESUMO

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 µm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 µm in the 5-12-µm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 µm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

2.
Faraday Discuss ; 245(0): 80-111, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37530120

RESUMO

Traditionally, the search for life on exoplanets has been predominantly focused on rocky exoplanets. The recently proposed Hycean worlds have the potential to significantly expand and accelerate the search for life elsewhere. Hycean worlds are a class of habitable sub-Neptunes with planet-wide oceans and H2-rich atmospheres. Their broad range of possible sizes and temperatures lead to a wide habitable zone and high potential for discovery and atmospheric characterization using transit spectroscopy. Over a dozen candidate Hycean planets are already known to be transiting nearby M dwarfs, making them promising targets for atmospheric characterization with the James Webb Space Telescope (JWST). In this work, we investigate possible chemical conditions on a canonical Hycean world, focusing on (a) the present and primordial molecular composition of the atmosphere, and (b) the inventory of bioessential elements for the origin and sustenance of life in the ocean. Based on photochemical and kinetic modeling for a range of conditions, we discuss the possible chemical evolution and observable present-day composition of its atmosphere. In particular, for reduced primordial conditions the early atmospheric evolution passes through a phase that is rich in organic molecules that could provide important feedstock for prebiotic chemistry. We investigate avenues for delivering bioessential metals to the ocean, considering the challenging lack of weathering from a rocky surface and the ocean separated from the rocky core by a thick icy mantle. Based on ocean depths from internal structure modelling and elemental estimates for the early Earth's oceans, we estimate the requirements for bioessential metals in such a planet. We find that the requirements can be met for plausible assumptions about impact history and atmospheric sedimentation, and supplemented by other steady state sources. We discuss the observational prospects for atmospheric characterisation of Hycean worlds with JWST and future directions of this new paradigm in the search for life on exoplanets.

3.
Nature ; 617(7961): 483-487, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100917

RESUMO

Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 µm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-µm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.

4.
Nature ; 614(7949): 664-669, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623549

RESUMO

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 µm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 µm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.

5.
Icarus ; 307: 124-145, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30842687

RESUMO

A time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere. At mbar pressures and deeper, slower chemistry and diffusion lead to latitude variations that become more symmetric about the equator. On Uranus, the stagnant, poorly mixed stratosphere confines methane and its photochemical products to higher pressures, where chemistry and diffusion time scales remain large. Seasonal variations in hydrocarbons are therefore predicted to be more muted on Uranus, despite the planet's very large obliquity. Radiative-transfer simulations demonstrate that latitude variations in hydrocarbons on both planets are potentially observable with future JWST mid-infrared spectral imaging. Our seasonal model predictions for Neptune compare well with retrieved C2H2 and C2H6 abundances from spatially resolved ground-based observations (no such observations currently exist for Uranus), suggesting that stratospheric circulation - which was not included in these models - may have little influence on the large-scale meridional hydrocarbon distributions on Neptune, unlike the situation on Jupiter and Saturn.

6.
Icarus ; 297: 33-58, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842686

RESUMO

Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe, A.R. et al. [2016], Icarus 264, 369), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0 - 0.7 + 2.2 × 10 7 O atoms cm-2 s-1 to Jupiter, 7.4 - 5.1 + 16 × 10 4 cm-2 s-1 to Saturn, 8.9 - 6.1 + 19 × 10 4 cm-2 s-1 to Uranus, and 7.5 - 5.1 + 16 × 10 5 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

7.
Space Sci Rev ; 205(1): 285-348, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28057962

RESUMO

Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.

8.
Icarus ; 261: 149-168, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842685

RESUMO

The giant northern-hemisphere storm that erupted on Saturn in December 2010 triggered significant changes in stratospheric temperatures and species abundances that persisted for more than a year after the original outburst. The stratospheric regions affected by the storm have been nicknamed "beacons" due to their prominent infrared-emission signatures (Fletcher, L.N. et al. [2011]. Science 332, 1413). The two beacon regions that were present initially merged in April 2011 to form a single, large, anticyclonic vortex (Fletcher, L.N. et al. [2012]. Icarus 221, 560). We model the expected photochemical evolution of the stratospheric constituents in the beacons from the initial storm onset through the merger and on out to March 2012. The results are compared with longitudinally resolved Cassini/CIRS spectra from May 2011. If we ignore potential changes due to vertical winds within the beacon, we find that C2H2, C2H6, and C3H8 remain unaffected by the increased stratospheric temperatures in the beacon, the abundance of the shorter-lived CH3C2H decreases, and the abundance of C2H4 increases significantly due to the elevated temperatures, the latter most notably in a secondary mixing-ratio peak located near mbar pressures. The C4H2 abundance in the model decreases by a factor of a few in the 0.01-10 mbar region but has a significant increase in the 10-30 mbar region due to evaporation of the previously condensed phase. The column abundances of C6H6 and H2O above ~30 mbar also increase due to aerosol evaporation. Model-data comparisons show that models that consider temperature changes alone underpredict the abundance of C2H x species by a factor of 2-7 in the beacon core in May 2011, suggesting that other processes not considered by the models, such as downwelling winds in the vortex, are affecting the species profiles. Additional calculations indicate that downwelling winds of order -10 cm s -1 near ~0.1 mbar need to be included in the photochemical models in order to explain the inferred C2H x abundances in the beacon core, indicating that both strong subsiding winds and chemistry at elevated temperatures are affecting the vertical profiles of atmospheric constituents in the beacon. We (i) discuss the general chemical behavior of stratospheric species in the beacon region, (ii) demonstrate how the evolving beacon environment affects the species vertical profiles and emission characteristics (both with and without the presence of vertical winds), (iii) make predictions with respect to compositional changes that can be tested against Cassini and Herschel data, and higher-spectral-resolution ground-based observations of the beacon region, and (iv) discuss future measurements and modeling that could further our understanding of the dynamical origin, evolution, and chemical processing within these unexpected stratospheric vortices that were generated after the 2010 convective event.

9.
Philos Trans A Math Phys Eng Sci ; 372(2014): 20130073, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24664912

RESUMO

Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

10.
Nature ; 505(7481): 31-2, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24380949
11.
Faraday Discuss ; 147: 103-36; discussion 251-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302544

RESUMO

Using one-dimensional thermochemical/photochemical kinetics and transport models, we examine the chemistry of nitrogen-bearing species in the Jovian troposphere in an attempt to explain the low observational upper limit for HCN. We track the dominant mechanisms for interconversion of N2-NH3 and HCN-NH3 in the deep, high-temperature troposphere and predict the rate-limiting step for the quenching of HCN at cooler tropospheric altitudes. Consistent with some other investigations that were based solely on time-scale arguments, our models suggest that transport-induced quenching of thermochemically derived HCN leads to very small predicted mole fractions of hydrogen cyanide in Jupiter's upper troposphere. By the same token, photochemical production of HCN is ineffective in Jupiter's troposphere: CH4-NH3 coupling is inhibited by the physical separation of the CH4 photolysis region in the upper stratosphere from the NH3 photolysis and condensation region in the troposphere, and C2H2-NH3 coupling is inhibited by the low tropospheric abundance of C2H2. The upper limits from infrared and submillimetre observations can be used to place constraints on the production of HCN and other species from lightning and thundershock sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...