Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5316, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699877

RESUMO

Plant-based animal product alternatives are increasingly promoted to achieve more sustainable diets. Here, we use a global economic land use model to assess the food system-wide impacts of a global dietary shift towards these alternatives. We find a substantial reduction in the global environmental impacts by 2050 if globally 50% of the main animal products (pork, chicken, beef and milk) are substituted-net reduction of forest and natural land is almost fully halted and agriculture and land use GHG emissions decline by 31% in 2050 compared to 2020. If spared agricultural land within forest ecosystems is restored to forest, climate benefits could double, reaching 92% of the previously estimated land sector mitigation potential. Furthermore, the restored area could contribute to 13-25% of the estimated global land restoration needs under target 2 from the Kunming Montreal Global Biodiversity Framework by 2030, and future declines in ecosystem integrity by 2050 would be more than halved. The distribution of these impacts varies across regions-the main impacts on agricultural input use are in China and on environmental outcomes in Sub-Saharan Africa and South America. While beef replacement provides the largest impacts, substituting multiple products is synergistic.


Assuntos
Ecossistema , Magnoliopsida , Animais , Bovinos , Leite , Objetivos , Biodiversidade , Carne
2.
PLoS One ; 12(12): e0189029, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211775

RESUMO

The food demands of the United States (US) impart significant environmental pressures. The high rate of consumption of beef has been shown to be the largest driver of food-borne greenhouse gas emissions, water use and land occupation in the US diet. The environmental benefits of substituting animal products with vegetal foods are well documented, but significant psychological barriers persist in reducing meat consumption. Here we use life cycle assessment to appraise the environmental performance of a novel vegetal protein source in the mean US diet where it replaces ground beef, and in vegetarian and vegan diets where it substitutes for legumes, tofu and other protein sources. We find that relative to the mean US diet, vegetarian and vegan diets significantly reduce per-capita food-borne greenhouse gas emission (32% and 67%, respectively), blue water use (70% and 75%, respectively) and land occupation (70% and 79%, respectively), primarily in the form of rangeland. The substitution of 10%, 25% and 50% of ground beef with plant-based burger (PBB) at the national scale results in substantial reductions in annual US dietary greenhouse gas emissions (4.55-45.42 Mt CO2 equivalents), water consumption (1.30-12.00 km3) and land occupation (22300-190100 km2). Despite PBB's elevated environmental pressures compared to other vegetal protein sources, we demonstrate that minimal risk exists for the disservices of PBB substitution in non-meat diets to outweigh the benefits of ground-beef substitution in the omnivorous American diet. Demand for plant-based oils in PBB production has the potential to increase land use pressures in biodiversity hotspots, though these could be obviated through responsible land stewardship. Although the apparent environmental benefits of the PBB are contingent on actual uptake of the product, this study demonstrates the potential for non-traditional protein substitutes to play a role in a transition towards more sustainable consumption regimes in the US and potentially abroad.


Assuntos
Dieta , Produtos da Carne , Proteínas de Plantas/administração & dosagem , Animais , Bovinos , Efeito Estufa , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...