Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biofabrication ; 13(3)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34102612

RESUMO

Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 CO2eq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,n= 10,p< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,n= 3,p< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,n= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.


Assuntos
Bioimpressão , Materiais Biocompatíveis , Módulo de Elasticidade , Polímeros , Resistência à Tração , Engenharia Tecidual , Alicerces Teciduais
3.
Ann N Y Acad Sci ; 1442(1): 138-152, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30985969

RESUMO

Cartilage injury, such as full-thickness lesions, predisposes patients to the premature development of osteoarthritis, a degenerative joint disease. While surgical management of cartilage lesions has improved, long-term clinical efficacy has stagnated, owing to the lack of hyaline cartilage regeneration and inadequate graft-host integration. This study tests the hypothesis that integration of cartilage grafts with native cartilage can be improved by enhancing the migration of chondrocytes across the graft-host interface via the release of chemotactic factor from a degradable polymeric mesh. To this end, a polylactide-co-glycolide/poly-ε-caprolactone mesh was designed to localize the delivery of insulin-like growth factor 1 (IGF-1), a well-established chondrocyte attractant. The release of IGF-1 (100 ng/mg) enhanced cell migration from cartilage explants, and the mesh served as critical structural support for cell adhesion, growth, and production of a cartilaginous matrix in vitro, which resulted in increased integration strength compared with mesh-free repair. Further, this neocartilage matrix was structurally contiguous with native and grafted cartilage when tested in an osteochondral explant model in vivo. These results demonstrate that this combined approach of a cell homing factor and supportive matrix will promote cell-mediated integrative cartilage repair and improve clinical outcomes of cartilage grafts in the treatment of osteoarthritis.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/administração & dosagem , Polímeros/química , Regeneração , Animais , Cartilagem Articular/citologia , Cartilagem Articular/fisiologia , Bovinos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia
4.
Mater Sci Eng C Mater Biol Appl ; 77: 1135-1144, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28531989

RESUMO

Biodegradable magnesium alloys including AZ31 are exciting candidates for temporary implants as they eliminate the requirement for surgical removal, yet have higher mechanical properties than degradable polymers. However, the very long term mechanical properties and degradation of these alloys have not been fully characterized. The tensile, bending and corrosion behaviour of biodegradable AZ31 Mg alloy specimens have been investigated for up to 9months in vitro in phosphate buffered saline (PBS). Small AZ31 Mg specimens showed a significant drop in bend yield strength and modulus after 3months in vitro degradation and an average mass loss of 6.1%. Larger dumbbell specimens showed significant drops in tensile strength from 251.96±3.53MPa to 73.5±20.2MPa and to 6.43±0.9MPa and in modulus from 47.8±5.6GPa to 25.01±3.4GPa and 2.36±0.89GPa after 3 and 9months respectively. These reductions were accompanied by an average mass loss of 18.3% in 9months. Degradation rate for the small and large specimens followed similar profiles with immersion time, with peak degradation rates of 0.1747gm-2h-1 and 0.0881gm-2h-1, and average rates of 0.1038gm-2h-1 and 0.0397gm-2h-1 respectively. SEM fractography and polished specimen cross-sections revealed corrosion pits, cracks and corrosion induced defects. These data indicate the potential of AZ31 Mg for use in implants that require medium term degradation with load bearing mechanical properties.


Assuntos
Ligas/química , Corrosão , Magnésio , Teste de Materiais , Polímeros , Próteses e Implantes
5.
Biomaterials ; 105: 25-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27497058

RESUMO

AIMS: Valve interstitial cells are active and aggressive players in aortic valve calcification, but their dynamic mediation of mechanically-induced calcific remodeling is not well understood. The goal of this study was to elucidate the feedback loop between valve interstitial cell and calcification mechanics using a novel three-dimensional culture system that allows investigation of the active interplay between cells, disease, and the mechanical valve environment. METHODS & RESULTS: We designed and characterized a novel bioreactor system for quantifying aortic valve interstitial cell contractility in 3-D hydrogels in control and osteogenic conditions over 14 days. Interstitial cells demonstrated a marked ability to exert contractile force on their environment and to align collagen fibers with the direction of tension. Osteogenic environment disrupted interstitial cell contractility and led to disorganization of the collagen matrix, concurrent with increased αSMA, TGF-ß, Runx2 and calcific nodule formation. Interestingly, RhoA was also increased in osteogenic condition, pointing to an aberrant hyperactivation of valve interstitial cells mechanical activity in disease. This was confirmed by inhibition of RhoA experiments. Inhibition of RhoA concurrent with osteogenic treatment reduced pro-osteogenic signaling and calcific nodule formation. Time-course correlation analysis indicated a significant correlation between interstitial cell remodeling of collagen fibers and calcification events. CONCLUSIONS: Interstitial cell contractility mediates internal stress state and organization of the aortic valve extracellular matrix. Osteogenesis disrupts interstitial cell mechanical phenotype and drives disorganization, nodule formation, and pro-calcific signaling via a RhoA-dependent mechanism.


Assuntos
Valva Aórtica/fisiopatologia , Reatores Biológicos , Calcinose/fisiopatologia , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Mecanotransdução Celular , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Desenho de Equipamento , Homeostase , Dispositivos Lab-On-A-Chip , Suínos
6.
Methods ; 84: 99-102, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846397

RESUMO

A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Ligamento Cruzado Anterior/citologia , Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior , Bovinos , Técnicas de Cultura de Células , Condrócitos/citologia , Fibroblastos/citologia , Humanos , Osseointegração , Osteoblastos/citologia
7.
Ann Biomed Eng ; 43(3): 697-717, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25465616

RESUMO

The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.


Assuntos
Biomimética , Engenharia Tecidual , Animais , Osso e Ossos , Cartilagem , Humanos , Tendões , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...