Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(50): 45867-45881, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570210

RESUMO

Electrospinning is a simple and cheap process for forming one-dimensional (1D) nanofibers with controllable size, morphology, and chemistry. Besides these, the ultrahigh surface area with industrialization capability has attracted extensive interest in the research community. On the other hand, a photocatalytic process is a promising method for degrading organic pollutants that cannot be removed by conventional wastewater treatment. This review focuses on the recent progress of electrospun nanofibers for the photocatalytic degradation of water pollutants. The linkage between the electrospinning technique and the photocatalytic process is classified into two main categories: (1) polymeric electrospun nanofibers as a sacrificed template to form 1D photocatalysts and (2) polymeric electrospun nanofibers as a carrier of photocatalyst materials. We have thoroughly discussed the principles and fundamental issues of electrospinning as well as two main strategies to design and fabricate nanofiber-based photocatalysts for the ideal photodegradation of organics pollutants. The results of data mapping using VOSviewer demonstrated the recent trend and the importance of this field among researchers and engineers. Moreover, we have elaborated on the limitations and potential benefits of the two categories of electrospinning-based photocatalyst fabrication and practical application that will open new directions for future research.

2.
Langmuir ; 37(28): 8382-8392, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240875

RESUMO

The wetting property of spherical particles in a hexagonal close-packed (HCP) ordering from extended Gibbs free energy (GFE) and Laplace pressure view points is studied. A formalism is proposed to predict the contact angle (θ) of a droplet on the HCP films and penetration angle (α) of the liquid on the spherical particles. Then, the extended Laplace pressure for the layered HCP ordering is calculated and a correlation between the wetting angle, sign of pressure, and pressure gradient is achieved. Our results show that the sign and the slope of pressure are important criteria for determining the wettability state and it is found that the contact angle is independent of the particle radius, as supported by various experimental reports. The pressure gradient for the HCP films with Young contact angle higher than (lower than) a critical contact angle, 135° (45°), is positive (negative), indicating the superhydrophobicity (superhydrophilicity) state of the surface. To validate the proposed formulation, theoretical calculations are compared with the reported experimental measurements, showing a good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...