Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 139(6): 3259, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27369150

RESUMO

A transmission-line acoustic metamaterial is an engineered, periodic arrangement of relatively small unit-cells, the acoustic properties of which can be manipulated to achieve anomalous physical behaviours. These exotic properties open the door to practical applications, such as an acoustic leaky-wave antenna, through the implementation of radiating channels along the metamaterial. In the transmitting mode, such a leaky-wave antenna is capable of steering sound waves in frequency-dependent directions. Used in reverse, the antenna presents a well defined direction-frequency behaviour. In this paper, an acoustic leaky-wave structure is presented in the receiving mode. It is shown that it behaves as a sound source direction-finding device using only one sensor. After a general introduction of the acoustic leaky-wave antenna concept, its radiation pattern and radiation efficiency are expressed in closed form. Then, numerical simulations and experimental assessments of the proposed transmission-line based structure, implementing only one sensor at one termination, are presented. It is shown that such a structure is capable of finding the direction of an incoming sound wave, from backward to forward, based on received sound power spectra. This introduces the concept of sound source localization without resorting to beam-steering techniques based on multiple sensors.

2.
Nano Lett ; 16(8): 4746-53, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387370

RESUMO

Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

3.
Nat Commun ; 7: 11216, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048760

RESUMO

Isolators, or optical diodes, are devices enabling unidirectional light propagation by using non-reciprocal optical materials, namely materials able to break Lorentz reciprocity. The realization of isolators at terahertz frequencies is a very important open challenge made difficult by the intrinsically lossy propagation of terahertz radiation in current non-reciprocal materials. Here we report the design, fabrication and measurement of a terahertz non-reciprocal isolator for circularly polarized waves based on magnetostatically biased monolayer graphene, operating in reflection. The device exploits the non-reciprocal optical conductivity of graphene and, in spite of its simple design, it exhibits almost 20 dB of isolation and only 7.5 dB of insertion loss at 2.9 THz. Operation with linearly polarized light can be achieved using quarter-wave plates as polarization converters. These results demonstrate the superiority of graphene with respect to currently used terahertz non-reciprocal materials and pave the way to a novel class of optimal non-reciprocal devices.

4.
Sci Rep ; 6: 18911, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739504

RESUMO

The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

5.
Nanotechnology ; 26(13): 134002, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25760049

RESUMO

Graphene plasmonic nanostructures enable subwavelength confinement of electromagnetic energy from the mid-infrared down to the terahertz frequencies. By exploiting the spectrally varying light scattering phase at the vicinity of the resonant frequency of the plasmonic nanostructure, it is possible to control the angle of reflection of an incoming light beam. We demonstrate, through full-wave electromagnetic simulations based on Maxwell equations, the electrical control of the angle of reflection of a mid-infrared light beam by using an aperiodic array of graphene nanoribbons, whose widths are engineered to produce a spatially varying reflection phase profile that allows for the construction of a far-field collimated beam towards a predefined direction.

6.
Front Neuroeng ; 6: 3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874290

RESUMO

Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.

7.
Bioelectromagnetics ; 34(5): 375-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23404214

RESUMO

Compliance with the established exposure limits for the electric field (E-field) induced in the human brain due to low-frequency magnetic field (B-field) induction is demonstrated by numerical dosimetry. The objective of this study is to investigate the dependency of dosimetric compliance assessments on the applied methodology and segmentations. The dependency of the discretization uncertainty (i.e., staircasing and field singularity) on the spatially averaged peak E-field values is first determined using canonical and anatomical models. Because spatial averaging with a grid size of 0.5 mm or smaller sufficiently reduces the impact of artifacts regardless of tissue size, it is a superior approach to other proposed methods such as the 99th percentile or smearing of conductivity contrast. Through a canonical model, it is demonstrated that under the same uniform B-field exposure condition, the peak spatially averaged E-fields in a heterogeneous model can be significantly underestimated by a homogeneous model. The frequency scaling technique is found to introduce substantial error if the relative change in tissue conductivity is significant in the investigated frequency range. Lastly, the peak induced E-fields in the brain tissues of five high-resolution anatomically realistic models exposed to a uniform B-field at ICNIRP and IEEE reference levels in the frequency range of 10 Hz to 100 kHz show that the reference levels are not always compliant with the basic restrictions. Based on the results of this study, a revision is recommended for the guidelines/standards to achieve technically sound exposure limits that can be applied without ambiguity.


Assuntos
Encéfalo/efeitos da radiação , Campos Eletromagnéticos , Exposição Ambiental , Campos Magnéticos , Adolescente , Adulto , Estatura , Peso Corporal , Pré-Escolar , Condutividade Elétrica , Feminino , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Modelos Anatômicos , Modelos Biológicos , Obesidade/fisiopatologia , Doses de Radiação , Incerteza
8.
Phys Med Biol ; 57(23): 7813-27, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23135209

RESUMO

This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.


Assuntos
Eletrodos Implantados/efeitos adversos , Análise de Elementos Finitos , Metais , Segurança , Estimulação Magnética Transcraniana/efeitos adversos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Condutividade Elétrica , Humanos , Masculino , Modelos Anatômicos
9.
J Neurosci Methods ; 186(1): 90-6, 2010 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19895845

RESUMO

Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Análise de Elementos Finitos , Axônios/fisiologia , Encéfalo/fisiologia , Simulação por Computador , Imagem de Tensor de Difusão , Impedância Elétrica/uso terapêutico , Eletrodos Implantados/normas , Humanos , Modelos Neurológicos , Padrões de Referência
10.
Opt Express ; 16(2): 1007-19, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18542174

RESUMO

The surface polariton properties of TM or TE plane wave scattered by a coated cylinder are investigated in this paper. The coated cylinder (whose outer radius is much smaller than the wavelength) is assumed to be electrically small and low dissipative. Analytical formulas of the plasmonic resonances are derived and found to agree well with those obtained from exact expressions in the classical scattering theory. The behaviors of the scattering coefficients at resonances are also discussed and compared for different cases. While a single cylinder has the resonance at the relative permittivity of epsilon(r) = -1 (or relative permeability of mu(r) = -1) for the TE (or TM) polarization, the resonances of the coated cylinders change with different n values (where n denotes the series term or mode of the field), and also the inner and outer radii. It is shown that the scattered field in the near zone can be enhanced significantly compared to the incident wave. For the TE incident case, we take a silver coated nano-cylinder as an example to illuminate the near-field optical effect. Also, we have studied the peak values of the nth order scattered field for different n values and electrical parameter k0b (where k0 is the wavenumber of the free space and b denotes the outer radius of the cylinder) around the cylinder. The derived new formulas for total cross sections are given and they may provide us with some potential photonic applications such as surface cleaning and etching.


Assuntos
Modelos Teóricos , Nanoestruturas , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...