Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 69: 404-411, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28199931

RESUMO

Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions.


Assuntos
Artroplastia de Substituição , Prótese Articular , Desenho de Prótese , Articulação Temporomandibular , Força de Mordida , Parafusos Ósseos , Feminino , Humanos , Mandíbula , Mastigação , Teste de Materiais , Pessoa de Meia-Idade , Impressão Tridimensional
2.
J Biomech Eng ; 137(4): 041001, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25565306

RESUMO

One of the most widely reported complications associated with temporomandibular joint (TMJ) prosthetic total joint replacement (TJR) surgery is condylar component screw loosening and instability. The objective of this study was to develop a musculoskeletal model of the human jaw to assess the influence of prosthetic condylar component orientation and screw placement on condylar component loading during mastication. A three-dimensional model of the jaw comprising the maxilla, mandible, masticatory muscles, articular cartilage, and articular disks was developed. Simulations of mastication and a maximum force bite were performed for the natural TMJ and the TMJ after prosthetic TJR surgery, including cases for mastication where the condylar component was rotated anteriorly by 0 deg, 5 deg, 10 deg, and 15 deg. Three clinically significant screw configurations were investigated: a complete, posterior, and minimal-posterior screw (MPS) configuration. Increases in condylar anterior rotation led to an increase in prosthetic condylar component contact stresses and substantial increases in condylar component screw stresses. The use of more screws in condylar fixation reduced screw stress magnitudes and maximum condylar component stresses. Screws placed superiorly experienced higher stresses than those of all other condylar fixation screws. The results of the present study have important implication for the way in which prosthetic components are placed during TMJ prosthetic TJR surgery.


Assuntos
Artroplastia de Substituição , Prótese Articular , Modelos Anatômicos , Músculos/anatomia & histologia , Articulação Temporomandibular/anatomia & histologia , Articulação Temporomandibular/cirurgia , Parafusos Ósseos , Análise de Elementos Finitos , Humanos , Masculino , Côndilo Mandibular/anatomia & histologia , Côndilo Mandibular/fisiologia , Músculos/fisiologia , Estresse Mecânico , Articulação Temporomandibular/fisiologia , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...