Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antivir Ther ; 23(4): 295-306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28195559

RESUMO

BACKGROUND: Intravenous zanamivir has been used to treat patients with severe influenza. Because the majority of cases (including immunocompromised patients) require the drug for an extended period of treatment, there is a higher risk that the virus will develop resistance. Therefore, knowing the possible amino acid substitutions that may arise in recently circulating influenza strains under prolonged zanamivir exposure and their impact on antiviral susceptibility is important. METHODS: Influenza A(H1N1)pdm09, A(H3N2) and B virus were serially passaged under increasing zanamivir pressure in vitro. Neuraminidase (NA) mutations that arose were introduced into recombinant viruses and the susceptibility to oseltamivir, zanamivir, peramivir and laninamivir was determined. The replication fitness of the recombinant variants was assessed in the ferret. RESULTS: NA mutations E119D (N1 numbering) and E117D (B numbering) were detected in A(H1N1)pdm09 and B (Victoria-lineage) viruses respectively and were associated with reduced susceptibility to all four NA inhibitors. No NA mutations were detected in the A(H3N2) or B (Yamagata-lineage) viruses. In ferrets, the A(H1N1)pdm09 E119D variant caused a lower degree of morbidity and the mutation was found to be unstable with E119 reverted virus detected 4 days post-infection of ferrets with the variant E119D virus. In contrast, the influenza B E117D variant was genetically stable in ferrets, caused a noticeable level of morbidity but had a significant reduction in replication fitness compared to wild-type virus. CONCLUSIONS: The NA mutations E119D in influenza A(H1N1)pdm09 and E117D in influenza B viruses that arose under zanamivir pressure conferred resistance to multiple NA inhibitors but had compromised viral replication in ferrets compared to wild-type virus without antiviral drug pressure.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Aptidão Genética , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Suscetibilidade a Doenças , Furões , Vírus da Influenza A/classificação , Testes de Sensibilidade Microbiana , Mutação , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , RNA Viral , Recombinação Genética , Análise de Sequência de DNA , Zanamivir/farmacologia , Zanamivir/uso terapêutico
2.
J Infect Dis ; 212(11): 1701-10, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25943206

RESUMO

BACKGROUND: Epidemiological studies suggest that, following infection with influenza virus, there is a short period during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral interference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of human influenza to systematically investigate viral interference. METHODS: Ferrets were first infected then challenged 1-14 days later with pairs of influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses circulating in 2009 and 2010. RESULTS: Viral interference was observed when the interval between initiation of primary infection and subsequent challenge was <1 week. This effect was virus specific and occurred between antigenically related and unrelated viruses. Coinfections occurred when 1 or 3 days separated infections. Ongoing shedding from the primary virus infection was associated with viral interference after the secondary challenge. CONCLUSIONS: The interval between infections and the sequential combination of viruses were important determinants of viral interference. The influenza viruses in this study appear to have an ordered hierarchy according to their ability to block or delay infection, which may contribute to the dominance of different viruses often seen in an influenza season.


Assuntos
Modelos Animais de Doenças , Influenza Humana/imunologia , Influenza Humana/virologia , Orthomyxoviridae/imunologia , Interferência Viral/imunologia , Animais , Coinfecção , Furões , Humanos , Eliminação de Partículas Virais
3.
Antiviral Res ; 120: 66-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26022199

RESUMO

Laninamivir is a long-acting antiviral requiring only a single dose for the treatment of influenza infection, making it an attractive alternative to existing neuraminidase inhibitors that require multiple doses over many days. Like zanamivir, laninamivir is administered to patients by inhalation of dry powder. To date, studies investigating the effectiveness of laninamivir or zanamivir in a ferret model of influenza infection have administered the drug in a solubilised form. To better mimic the delivery action of laninamivir in humans, we assessed the applicability of a Dry Powder Insufflator™ (DPI) as a delivery method for laninamivir octanoate (LO) in ferrets to determine the effectiveness of this drug in reducing influenza A and B virus infections. In vitro characterisation of the DPI showed that both the small particle sized LO (0.7-6.0µm diameter) and the large particle sized lactose carrier (20-100µm diameter) were effectively discharged. However, LO delivered to ferrets via the DPI prior to infection with either A(H1N1)pdm09 or B viruses had a limited effect on nasal inflammation, clinical symptoms and viral shedding compared to placebo. Our preliminary findings indicate the feasibility of administering powder drugs into ferrets, but a better understanding of the pharmacokinetics and pharmacodynamics of LO in ferrets following delivery by the DPI is warranted prior to further studies.


Assuntos
Antivirais/administração & dosagem , Portadores de Fármacos/administração & dosagem , Infecções por Orthomyxoviridae/tratamento farmacológico , Pós/administração & dosagem , Zanamivir/análogos & derivados , Administração por Inalação , Animais , Modelos Animais de Doenças , Furões , Guanidinas , Placebos/administração & dosagem , Piranos , Ácidos Siálicos , Zanamivir/administração & dosagem
4.
J Antimicrob Chemother ; 70(7): 2004-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25786478

RESUMO

OBJECTIVES: The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase mutations in influenza B viruses that may further reduce NAI susceptibility, and to determine whether these mutations have the same effect in the two lineages of influenza B viruses that are currently circulating (B/Yamagata-like and B/Victoria-like). METHODS: We characterized the effect of 16 amino acid substitutions across five framework residues and four monomeric interface residues on the susceptibility to four different NAIs (oseltamivir, zanamivir, peramivir and laninamivir). RESULTS: Framework residue mutations E117A and E117G conferred highly reduced inhibition to three of the four NAIs, but substantially reduced neuraminidase activity, whereas other framework mutations retained a greater level of NA activity. Mutations E105K, P139S and G140R of the monomeric interface were also found to cause highly reduced inhibition, but, interestingly, their effect was substantially greater in a B/Victoria-like neuraminidase than in a B/Yamagata-like neuraminidase, with some susceptibility values being up to 1000-fold different between lineages. CONCLUSIONS: The frequency and the effect of key neuraminidase mutations on neuraminidase activity and NAI susceptibility can differ substantially between the two influenza B lineages. Therefore, future surveillance, analysis and interpretation of influenza B virus NAI susceptibility should consider the B lineage of the neuraminidase in the same manner as already occurs for different influenza A neuraminidase subtypes.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/enzimologia , Mutação de Sentido Incorreto , Neuraminidase/genética , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Neuraminidase/química , Conformação Proteica
5.
J Virol ; 90(6): 2838-48, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719259

RESUMO

UNLABELLED: The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1ß, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-ß, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE: Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage. Surveillance data indicate that the burden of disease is higher in some seasons, yet it is unclear whether this is due to specific virus strains or to other factors, such as cross-reactive immunity or clinical definitions of influenza. We directly compared disease severities and localized inflammatory responses to different seasonal influenza virus strains, including the 2009 pandemic strain, in healthy naive ferrets. We found that the disease severities and the cytokine and chemokine responses were similar irrespective of the seasonal strain or the location of the infection in the respiratory tract. This suggests that factors other than the immune response to a particular virus (sub)type contribute to the variable impact of influenza virus infection in a population.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Animais , Temperatura Corporal , Peso Corporal , Citocinas/análise , Modelos Animais de Doenças , Feminino , Furões , Perfilação da Expressão Gênica , Humanos , Masculino , Infecções por Orthomyxoviridae/virologia , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Carga Viral , Eliminação de Partículas Virais
6.
Expert Rev Anti Infect Ther ; 11(11): 1135-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24093683

RESUMO

Influenza A and B viruses cause significant morbidity and mortality worldwide each year. The neuraminidase inhibitors (NAIs) are the most commonly used class of influenza antiviral drugs for the treatment of infected patients. In vitro studies have shown that influenza B viruses are significantly less susceptible to oseltamivir and other neuraminidase inhibitors compared with influenza A viruses. Following analysis of published clinical studies, we show that oseltamivir does appear to have lower effectiveness in patients infected with influenza B virus compared with influenza A infected patients, but due to insufficient studies on zanamivir, laninamivir or peramivir, it was not possible to conclude the relative effectiveness of these drugs against influenza A virus compared with B virus.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , Guanidinas , Humanos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/prevenção & controle , Testes de Sensibilidade Microbiana , Oseltamivir/química , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Piranos , Ácidos Siálicos , Zanamivir/análogos & derivados , Zanamivir/química , Zanamivir/farmacologia , Zanamivir/uso terapêutico
7.
PLoS Pathog ; 9(5): e1003354, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671418

RESUMO

Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.


Assuntos
Antígenos Virais , Deriva Genética , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Mutação de Sentido Incorreto/imunologia , Pandemias , Substituição de Aminoácidos , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Embrião de Galinha , Modelos Animais de Doenças , Cães , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Masculino
8.
Mol Ecol Resour ; 13(4): 634-41, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23582171

RESUMO

The koala, an Australian icon, has been added to the threatened species list. Rationale for the listing includes proposed declines in population size, threats to populations (e.g. disease) and loss and fragmentation of habitat. There is now an urgent need to obtain accurate data to assess the status of koala populations in Australia, to ensure the long-term viability of this species. Advances in genetic techniques have enabled DNA analysis to study and inform the management of wild populations; however, sampling of individual koalas is difficult in tall, often remote, eucalypt forest. The collection of faecal pellets (scats) from the forest floor presents an opportunistic sampling strategy, where DNA can be collected without capturing or even sighting an individual. Obtaining DNA via noninvasive sampling can be used to rapidly sample a large proportion of a population; however, DNA from noninvasively collected samples is often degraded. Factors influencing DNA quality and quantity include environmental exposure, diet and methods of sample collection, storage and DNA isolation. Reduced DNA quality and quantity can introduce genotyping errors and provide inaccurate DNA profiles, reducing confidence in the ability of such data to inform management/conservation strategies. Here, we present a protocol that produces a reliable individual koala genotype from a single faecal pellet and highlight the importance of optimizing DNA isolation and analysis for the species of interest. This method could readily be adapted for genetic studies of mammals other than koalas, particularly those whose diet contains high proportions of volatile materials that are likely to induce DNA damage.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , DNA/isolamento & purificação , Fezes/química , Phascolarctidae/classificação , Phascolarctidae/genética , Animais , Austrália , Genótipo , Manejo de Espécimes/métodos
9.
DNA Cell Biol ; 31(7): 1303-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22455394

RESUMO

The negative-sense asp open reading frame (ORF) positioned opposite to the human immunodeficiency virus type 1 (HIV-1) env gene encodes the 189 amino acid, membrane-associated ASP protein. Negative-sense transcription, regulated by long terminal repeat sequences, has been observed early in HIV-1 infection in vitro. All subtypes of HIV-1 were scanned to detect the negative-sense asp ORF and to identify potential regulatory sequences. A series of highly conserved upstream short open reading frames (sORFs) was identified. This potential control region from HIV-1(NL4-3), containing six sORFs, was cloned upstream of the reporter gene EGFP. Expression by transfection of HEK293 cells indicated that the introduction of this sORF region inhibits EGFP reporter expression; analysis of transcripts revealed no significant changes in levels of EGFP mRNA. Reverse transcriptase-polymerase chain reaction analysis (RT-PCR) further demonstrated that the upstream sORF region undergoes alternative splicing in vitro. The most abundant product is spliced to remove sORFs I to V, leaving only the in-frame sORF VI upstream of asp. Sequence analysis revealed the presence of typical splice donor- and acceptor-site motifs. Mutation of the highly conserved splice donor and acceptor sites modulates, but does not fully relieve, inhibition of EGFP production. The strong conservation of asp and its sORFs across all HIV-1 subtypes suggests that the asp gene product may have a role in the pathogenesis of HIV-1. Alternative splicing of the upstream sORF region provides a potential mechanism for controlling expression of the asp gene.


Assuntos
Processamento Alternativo/genética , Regulação Viral da Expressão Gênica/genética , HIV-1/genética , Regiões não Traduzidas/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Sequência de Bases , Sequência Conservada , Genes Reporter/genética , Células HEK293 , Humanos , Mutação , Motivos de Nucleotídeos/genética , Fases de Leitura Aberta/genética
10.
J Immunol ; 188(5): 2207-17, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22291191

RESUMO

We treated mice with 5-fluorouracil (5-FU) to isolate a quiescent and undifferentiated mesenchymal stromal cell (MSC) population from the bone marrow. We examined these 5-FU-resistant MSCs (5-FU-MSCs) free from hematopoietic components for CFU fibroblasts (CFU-Fs) and assessed their immunosuppressive potential in vitro and in vivo. We differentiated fibroblastic CFU-Fs (Fibro-CFU-Fs) from mixed CFU-Fs, based on the absence of in situ expression of CD11b and CD45 hematopoietic markers, as well as on their differentiation capacity. Fibro-CFU-Fs were associated with increased numbers of large-sized Fibro-CFU-Fs (≥9 mm(2)) that displayed enhanced capacity for differentiation into adipogenic and osteogenic mesenchymal lineages. Administration of these 5-FU-resistant CD11b(-)CD45(-) MSCs 6 d after myelin oligodendrocyte glycoprotein (MOG) immunization completely remitted MOG-induced experimental autoimmune encephalomyelitis after initial development of mild disease. The remission was accompanied by reduced CNS cellular infiltration and demyelination, as well as a significant reduction in anti-MOG Ab and splenocyte proliferation to MOG. MOG-stimulated splenocytes from these mice showed elevated levels of Th2 cytokines (IL-4, IL-5, and IL-6) and decreased IL-17. Compared with untreated MSCs, 5-FU-MSCs demonstrated potent immunosuppression of Con A-stimulated splenocytes in vitro, even at a 1:320 MSC/splenocyte ratio. Immunosuppression was accompanied by elevated IL-1ra, IL-10, and PGE(2). Blocking IL-1ra, IL-10, and PGE(2), but not IL-6, heme oxygenase-1, and NO, attenuated 5-FU-MSC-induced immunosuppression. Together, our findings suggested that immunosuppression by 5-FU-MSC is mediated by a combination of elevated IL-1ra, IL-10, and PGE(2), anti-inflammatory Th2 cytokines, and decreased IL-17. Our findings suggested that 5-FU treatment identifies a population of potently immunosuppressive 5-FU-MSCs that have the potential to be exploited to remit autoimmune diseases.


Assuntos
Regulação para Baixo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Fluoruracila/farmacologia , Imunossupressores/farmacologia , Mesoderma/imunologia , Células Estromais/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Resistência a Medicamentos/imunologia , Feminino , Ativação Linfocitária/imunologia , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Estromais/efeitos dos fármacos , Células Estromais/patologia
11.
J Virol ; 84(18): 9427-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631138

RESUMO

To determine the relative fitness of oseltamivir-resistant strains compared to susceptible wild-type viruses, we combined mathematical modeling and statistical techniques with a novel in vivo "competitive-mixtures" experimental model. Ferrets were coinfected with either pure populations (100% susceptible wild-type or 100% oseltamivir-resistant mutant virus) or mixed populations of wild-type and oseltamivir-resistant influenza viruses (80%:20%, 50%:50%, and 20%:80%) at equivalent infectivity titers, and the changes in the relative proportions of those two viruses were monitored over the course of the infection during within-host and over host-to-host transmission events in a ferret contact model. Coinfection of ferrets with mixtures of an oseltamivir-resistant R292K mutant A(H3N2) virus and a R292 oseltamivir-susceptible wild-type virus demonstrated that the R292K mutant virus was rapidly outgrown by the R292 wild-type virus in artificially infected donor ferrets and did not transmit to any of the recipient ferrets. The competitive-mixtures model was also used to investigate the fitness of the seasonal A(H1N1) oseltamivir-resistant H274Y mutant and showed that within infected ferrets the H274Y mutant virus was marginally outgrown by the wild-type strain but demonstrated equivalent transmissibility between ferrets. This novel in vivo experimental method and accompanying mathematical analysis provide greater insight into the relative fitness, both within the host and between hosts, of two different influenza virus strains compared to more traditional methods that infect ferrets with only pure populations of viruses. Our statistical inferences are essential for the development of the next generation of mathematical models of the emergence and spread of oseltamivir-resistant influenza in human populations.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Oseltamivir/farmacologia , Replicação Viral , Animais , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Modelos Teóricos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neuraminidase/genética , RNA Viral/genética , Análise de Sequência de DNA , Proteínas Virais/genética
12.
Antiviral Res ; 63(3): 177-81, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15451185

RESUMO

A contemporary influenza type B virus was passaged in vitro in the presence of increasing concentrations of the neuraminidase inhibitors, zanamivir and oseltamivir carboxylate (0.1-1000 microM over nine passages). After the fifth passage in the presence of zanamivir (10 microM), the virus acquired a Glu 119 Asp neuraminidase mutation (influenza A N2 subtype numbering) in the enzyme active site. After a further three passages, in which growth occurred in 100 microM of zanamivir, a Gln 218 Lys mutation (A (H3) numbering) in the HA1 domain of the haemagglutinin was found. In a fluorescence-based neuraminidase inhibition assay, viruses with the Glu 119 Asp NA mutation had a 32,000-fold reduction in sensitivity to the NA inhibitor zanamivir compared to the wild-type virus, while the mutation resulted in a 105-fold reduction in sensitivity to oseltamivir carboxylate. Viruses grown in the presence of 1000 microM oseltamivir carboxylate did not acquire any neuraminidase mutations but did have a His 103 Gln substitution (A (H3) numbering) in the HA1 region of the haemagglutinin which was demonstrated to significantly reduce receptor binding strength in vitro. Tissue culture assays demonstrated that the HA mutation caused a seven-fold reduction in sensitivity to oseltamivir carboxylate, and a 90-fold reduction in sensitivity to zanamivir.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Resistência Microbiana a Medicamentos , Guanidinas , Vírus da Influenza B/genética , Testes de Sensibilidade Microbiana , Mutagênese , Neuraminidase/genética , Piranos , Ácidos Siálicos/farmacologia , Zanamivir
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...