Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 125(2): 422-440, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29675837

RESUMO

AIMS: Marine seaweeds (macroalgae) cause an eutrophication problem and affects the touristic activities. The success of the production of the third-generation bioethanol from marine macroalgae depends mainly on the development of an ecofriendly and eco-feasible pretreatment (i.e. hydrolysis) technique, a highly effective saccharification step and finally an efficient bioethanol fermentation step. Therefore, this study aimed to investigate the potentiality of different marine macroalgal strains, collected from Egyptian coasts, for bioethanol production via different saccharification processes. METHODS AND RESULTS: Different marine macroalgal strains, red Jania rubens, green Ulva lactuca and brown Sargassum latifolium, have been collected from Egyptian Mediterranean and Red Sea shores. Different hydrolysis processes were evaluated to maximize the extraction of fermentable sugars; thermochemical hydrolysis with diluted acids (HCl and H2 SO4 ) and base (NaOH), hydrothermal hydrolysis followed by saccharification with different fungal strains and finally, thermochemical hydrolysis with diluted HCl, followed by fungal saccharification. The hydrothermal hydrolysis of S. latifolium followed by biological saccharification using Trichoderma asperellum RM1 produced maximum total sugars of 510 mg g-1 macroalgal biomass. The integration of the hydrothermal and fungal hydrolyses of the macroalgal biomass with a separate batch fermentation of the produced sugars using two Saccharomyces cerevisiae strains, produced approximately 0·29 g bioethanol g-1 total reducing sugars. A simulated regression modelling for the batch bioethanol fermentation was also performed. CONCLUSIONS: This study supported the possibility of using seaweeds as a renewable source of bioethanol throughout a suggested integration of macroalgal biomass hydrothermal and fungal hydrolyses with a separate batch bioethanol fermentation process of the produced sugars. SIGNIFICANCE AND IMPACT OF THE STUDY: The usage of marine macroalgae (i.e. seaweeds) as feedstock for bioethanol; an alternative and/or complimentary to petro-fuel, would act as triple fact solution; bioremediation process for ecosystem, renewable energy source and economy savings.


Assuntos
Etanol/metabolismo , Fermentação , Alga Marinha/metabolismo , Açúcares/química , Açúcares/metabolismo , Biomassa , Biotecnologia/métodos , Egito , Hidrólise , Saccharomyces cerevisiae , Trichoderma
2.
Springerplus ; 5(1): 1522, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652095

RESUMO

Some people cannot produce sound although their facial muscles work properly due to having problem in their vocal cords. Therefore, recognition of alphabets as well as sentences uttered by these voiceless people is a complex task. This paper proposes a novel method to solve this problem using non-invasive surface Electromyogram (sEMG). Firstly, eleven Bangla vowels are pronounced and sEMG signals are recorded at the same time. Different features are extracted and mRMR feature selection algorithm is then applied to select prominent feature subset from the large feature vector. After that, these prominent features subset is applied in the Artificial Neural Network for vowel classification. This novel Bangla vowel classification method can offer a significant contribution in voice synthesis as well as in speech communication. The result of this experiment shows an overall accuracy of 82.3 % with fewer features compared to other studies in different languages.

3.
Exp Hematol ; 29(7): 873-83, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11438210

RESUMO

OBJECTIVE: We have recently reported that 20% O2 significantly enhances total megakaryocyte (Mk) number, polyploidy, and proplatelet formation compared to 5% O2 in culture. In order to further elucidate the regulatory role of pO2 on megakaryocytopoiesis, we conducted a kinetic study of the expression of surface markers CD41a and CD42a; receptors for thrombopoietin (TPO), interleukin-3 (IL-3), and Flt3-ligand; the glutamate receptor of the N-methyl-D-aspartate subtype 1 (NMDAR1); and transcription factors GATA-1, NF-E2, and E2F-1. MATERIALS AND METHODS: Mks were generated from mobilized peripheral blood (PB) CD34+ cells from normal donors in serum-free medium with TPO, IL-3, and Flt3-ligand at 20% and 5% O2. Quantitative assessment of Mk surface receptors and nuclear transcription factors was performed using multiparameter flow cytometry. mRNA levels of the nuclear transcription factors GATA-1 and NF-E2 were evaluated using RT-PCR. RESULTS: The proportions of cells expressing the early Mk marker CD41a and the late Mk marker CD42a at day 15 were 4 and 5 times higher, respectively, at 20% O2. CD41a and CD42a protein levels per cell were also higher at 20% O2. After day 5, c-Mpl (TPO receptor) generally followed similar kinetics as CD41a. The proportion of IL-3 receptor (IL-3R)++ Mks at day 5 was 1.5 times higher at 5% O2. The NMDAR1 protein previously known to be expressed by neuronal cells has recently been identified in Mks. NMDAR1 and the transcription factors were studied on days 6, 9, and 11. NMDAR1 was expressed at a 1.5- to 1.8-fold higher level at 5% O2. Twenty percent O2 supported higher expression of the Mk-early and -late-maturation-specific transcription factors GATA-1 (1.2- to 2.2-fold higher) and NF-E2 (1.1- to 2.8-fold higher). This was consistent with RT-PCR data indicating the presence of higher levels of GATA-1 and NF-E2 mRNA at 20% O2. E2F-1, a ubiquitously expressed cell cycle transcription factor, was expressed at a 1.5-fold higher level at 20% O2 on day 6, but this difference did not persist by day 9. CONCLUSION: These findings demonstrate that cytokine receptors c-Mpl and IL-3R, and Mk differentiation-specific surface receptors CD41a, CD42a, and NMDAR1, are significantly modulated by pO2, and suggest that one of the mechanisms of enhanced maturation at 20% O2 may involve regulation of transcription factors GATA-1 and NF-E2.


Assuntos
Linhagem da Célula/fisiologia , Regulação da Expressão Gênica/fisiologia , Megacariócitos/citologia , Megacariócitos/fisiologia , Oxigênio/fisiologia , Biomarcadores , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Receptores de Citocinas/fisiologia , Fatores de Transcrição/fisiologia
4.
Br J Haematol ; 111(3): 879-89, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11122151

RESUMO

Megakaryocytes (Mks) mature adjacent to bone marrow (BM) sinus walls and subsequently release platelets within the sinusoidal space or in lung capillaries. As the sites for platelet release have higher levels of oxygen tension (pO(2)) than the core of the BM where stem and progenitor cells reside, we investigated whether pO(2) influences Mk maturation. Mks were generated from CD34(+) cells (from mobilized peripheral blood from cancer patients) under 5% and 20% O(2). At day 15, CD41(+) Mk expansion in 20% and 5% O(2) cultures was 85-fold and 31-fold respectively. Twenty percent O(2) cultures also had higher levels of high ploidy (> or = 8N, eightfold higher) and proplatelet-forming (fivefold higher) Mks. At day 21, 20% O(2) cultures had a fivefold higher number of apoptotic Mks. In contrast, 5% O(2) promoted Mk colony-forming unit (CFU-Mk) generation and maintenance. Similar results were observed in cultures initiated with CD41(+) Mks, indicating that pO(2) directly affects Mks. The change from 20% to 5% O(2) on day 5 and day 7 delayed both maturation and apoptosis, suggesting that these two processes are closely linked. These results were confirmed in CD34(+) cultures from normal BM samples. These data may provide insights into in vivo Mk maturation, such as an explanation for hypoxia-induced thrombocytopenia in animals.


Assuntos
Megacariócitos/fisiologia , Oxigênio/fisiologia , Antígenos CD34 , Apoptose/fisiologia , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Histocitoquímica , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...