Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6849, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514735

RESUMO

There are several productive petroleum fields in the North Western Desert (WD) of Egypt, which received extensive investigations regarding their petroleum potential. However, a few studies tackled the Matruh Oil Field, which contains the oil prolific Early Cretaceous Alam El-Bueib Formation (AEB Fm) reservoir. The reservoir intervals of the AEB Fm show substantial lithological variations across the basin. Therefore, it is necessary to analyze the vertical and lateral distributions in terms of their lithological and petrophysical properties. To achieve this objective, wireline logs of four wells and 20-2D seismic lines were used to construct a depth-structure contour map for the studied part of the field. This map was used to build the field's structure model and to identify the fault patterns in the basin through several seismic lines. Analyses of well logs data and lithology were used to estimate the petrophysical properties of AEB sandstone units AEB-1, AEB-3A, AEB-3C, and AEB-6. Results show that the AEB-6 Unit is the most promising hydrocarbon-bearing unit. It has a net pay of 20-160 feet, a shale volume of 5-20%, an effective porosity of 14-20%, and a hydrocarbon saturation of 70-88%. The structure-depth maps indicate a number of normal faults with two principal NE-SW and NW-SE trends, which probably act as structural traps in the Matruh Oil Field. The constructed structure-depth maps and calculated petrophysical parameters were used to build a three-dimensional reservoir model. A blind well was used to validate the accuracy and reliability of the facies, porosity, and saturation models for the AEB Fm units, ensuring a good match between log-derived data and built models. The AEB Fm shows regional heterogeneous variations in its petrophysical characteristics. It exhibits unconventional reservoir characteristics in a N-S direction and conventional reservoir characteristics in an E-W direction. This observed heterogeneity shows the need to carry out further investigations to comprehensively assess the hydrocarbon potential of AEB Fm in different areas of the Matruh Basin.

2.
Sci Rep ; 14(1): 5656, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454114

RESUMO

The primary objective of this study is to identify and analyze the petrophysical properties of the newly investigated AEB_IIIG member reservoir in Meleiha West Deep (MWD) Field and to classify it into different rock types. Additionally, this research intends to develop mathematical equations that may be utilized to estimate permeability in uncored sections of the same well or in other wells where core samples are unavailable. The analysis focused on the pore hole records of ten wells that were drilled in MWD Field. The reservoir levels were identified, and their petrophysical parameters were evaluated using well logs and core data. We were able to recognize seven different types of rocks (petrophysical static rock type 1 (PSRT1) to PSRT7) using petrography data, the reservoir quality index (RQI), the flow zone index (FZI), R35, hydraulic flow units (HFUs), and stratigraphy modified Lorenz (SML) plots. The analysis of the petrophysical data shows that AEB_IIIG has unsteady net pay thicknesses over the area. It has a range of 8-25% shale volume, 12-17% effective porosity, and 72-92% hydrocarbon saturation. The RQI results show that psrt1, psrt2 and psrt3 have a good reservoir quality as indicated by high R35 and helium porosity, respectively. They contribute with more than 75% of the reservoir production. The equation derived for each rock type of AEB_IIIG reservoir can be employed to forecast the permeability value distribution inside the reservoir.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...