Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Head Neck ; 45(12): 3086-3095, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828867

RESUMO

BACKGROUND: This study analyzed the predictive value of artificial intelligence (AI)-powered tumor-infiltrating lymphocyte (TIL) analysis in recurrent or metastatic (R/M) adenoid cystic carcinoma (ACC) treated with axitinib. METHODS: Patients from a multicenter, prospective phase II trial evaluating axitinib efficacy in R/M ACC were included in this study. H&E whole-side images of archival tumor tissues were analyzed by Lunit SCOPE IO, an AI-powered spatial TIL analyzer. RESULTS: Twenty-seven patients were included in the analysis. The best response was stable disease, and the median progression-free survival (PFS) was 11.1 months (95% CI, 9.2-13.7 months). Median TIL densities in the cancer and surrounding stroma were 25.8/mm2 (IQR, 8.3-73.0) and 180.4/mm2 (IQR, 69.6-342.8), respectively. Patients with stromal TIL density >342.5/mm2 exhibited longer PFS (p = 0.012). CONCLUSIONS: Cancer and stromal area TIL infiltration were generally low in R/M ACC. Higher stromal TIL infiltration was associated with a longer PFS with axitinib treatment.


Assuntos
Carcinoma Adenoide Cístico , Humanos , Inteligência Artificial , Axitinibe/uso terapêutico , Biomarcadores , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/patologia , Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos
2.
Diagnostics (Basel) ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292028

RESUMO

Despite the importance of tumor-infiltrating lymphocytes (TIL) and PD-L1 expression to the immune checkpoint inhibitor (ICI) response, a comprehensive assessment of these biomarkers has not yet been conducted in neuroendocrine neoplasm (NEN). We collected 218 NENs from multiple organs, including 190 low/intermediate-grade NENs and 28 high-grade NENs. TIL distribution was derived from Lunit SCOPE IO, an artificial intelligence (AI)-powered hematoxylin and eosin (H&E) analyzer, as developed from 17,849 whole slide images. The proportion of intra-tumoral TIL-high cases was significantly higher in high-grade NEN (75.0% vs. 46.3%, p = 0.008). The proportion of PD-L1 combined positive score (CPS) ≥ 1 case was higher in high-grade NEN (85.7% vs. 33.2%, p < 0.001). The PD-L1 CPS ≥ 1 group showed higher intra-tumoral, stromal, and combined TIL densities, compared to the CPS < 1 group (7.13 vs. 2.95, p < 0.001; 200.9 vs. 120.5, p < 0.001; 86.7 vs. 56.1, p = 0.004). A significant correlation was observed between TIL density and PD-L1 CPS (r = 0.37, p < 0.001 for intra-tumoral TIL; r = 0.24, p = 0.002 for stromal TIL and combined TIL). AI-powered TIL analysis reveals that intra-tumoral TIL density is significantly higher in high-grade NEN, and PD-L1 CPS has a positive correlation with TIL densities, thus showing its value as predictive biomarkers for ICI response in NEN.

3.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6890-6909, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34260349

RESUMO

An event camera reports per-pixel intensity differences as an asynchronous stream of events with low latency, high dynamic range (HDR), and low power consumption. This stream of sparse/dense events limits the direct use of well-known computer vision applications for event cameras. Further applications of event streams to vision tasks that are sensitive to image quality issues, such as spatial resolution and blur, e.g., object detection, would benefit from a higher resolution of image reconstruction. Moreover, despite the recent advances in spatial resolution in event camera hardware, the majority of commercially available event cameras still have relatively low spatial resolutions when compared to conventional cameras. We propose an end-to-end recurrent network to reconstruct high-resolution, HDR, and temporally consistent grayscale or color frames directly from the event stream, and extend it to generate temporally consistent videos. We evaluate our algorithm on real-world and simulated sequences and verify that it reconstructs fine details of the scene, outperforming previous methods in quantitative quality measures. We further investigate how to (1) incorporate active pixel sensor frames (produced by an event camera) and events together in a complementary setting and (2) reconstruct images iteratively to create an even higher quality and resolution in the images.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...