Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lasers Med Sci ; 39(1): 86, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438583

RESUMO

In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Animais , Ratos , Fator A de Crescimento do Endotélio Vascular/genética , Diabetes Mellitus Experimental/genética , Cicatrização/genética , Quimiocina CXCL12/genética , Fator 2 de Crescimento de Fibroblastos , Células-Tronco
2.
Lasers Med Sci ; 39(1): 46, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270723

RESUMO

This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.


Assuntos
Diabetes Mellitus , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , Humanos , Animais , Ratos , Meios de Cultivo Condicionados/farmacologia , Contagem de Leucócitos , Células-Tronco , Cicatrização , Proliferação de Células
3.
Lab Anim Res ; 39(1): 29, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964303

RESUMO

BACKGROUND: We aimed to examine the accompanying and solo impacts of conditioned medium of human adipose-derived stem cells (h-ASC-COM) and photobiomodulation (PBM) on the maturation stage of an ischemic infected delayed-healing wound model (IIDHWM) of rats with type 2 diabetes (TIIDM). RESULTS: Outcomes of the wound closure ratio (WCR) results, tensiometrical microbiological, and stereological assessment followed almost identical patterns. While the outcomes of h-ASC-COM + PBM, PBM only, and h-ASC-COM only regimes were significantly better for all evaluated methods than those of group 1(all, p < 0.001), PBM alone and h-ASC-COM + PBM therapy achieved superior results than h-ASC-COM only (ranged from p = 0.05 to p < 0.001). In terms of tensiometrical and stereological examinations, the results of h-ASC-COM + PBM experienced better results than the PBM only (all, p < 0.001). CONCLUSIONS: h-ASC-COM + PBM, PBM, and h-ASC-COM cures expressively accelerated the maturation stage in the wound healing process of IIDHWM with MRSA in TIIDM rats by diminishing the inflammatory reaction, and the microbial flora of MRSA; and increasing wound strength, WCR, number of fibroblasts, and new blood vessels. While the h-ASC-COM + PBM and PBM were more suitable than the effect of h-ASC-COM, the results of h-ASC-COM + PBM were superior to PBM only.

4.
J Diabetes Metab Disord ; 22(2): 1551-1560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975122

RESUMO

Purpose: This study aimed to investigate the effects of photobiomodulation (PBM) and conditioned medium (CM) derived from human adipose-derived stem cells (h-ASCs), both individually and in combination, on the maturation stage of an ischemic infected delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. Methods: The study involved the extraction of h-ASCs from donated fat, assessment of their immunophenotypic markers, cell culture, and extraction and concentration of CM from cultured 1 × 10^6 h-ASCs. TIDM was induced in 24 male adult rats, divided into four groups: control, CM group, PBM group (80 Hz, 0.2 J/cm2, 890 nm), and rats receiving both CM and PBM. Clinical and laboratory evaluations were conducted on days 4, 8, and 16, and euthanasia was performed using CO2 on day 16. Tensiometrical and stereological examinations were carried out using two wound samples from each rat. Results: Across all evaluated factors, including wound closure ratio, microbiological, tensiometrical, and stereological parameters, similar patterns were observed. The outcomes of CM + PBM, PBM, and CM treatments were significantly superior in all evaluated parameters compared to the control group (p = 0.000 for all). Both PBM and CM + PBM treatments showed better tensiometrical and stereological results than CM alone (almost all, p = 0.000), and CM + PBM outperformed PBM alone in almost all aspects (p = 0.000). Microbiologically, both CM + PBM and PBM exhibited fewer colony-forming units (CFU) than CM alone (both, p = 0.000). Conclusion: PBM, CM, and CM + PBM interventions substantially enhanced the maturation stage of the wound healing process in IIDHWM of TIDM rats by mitigating the inflammatory response and reducing CFU count. Moreover, these treatments promoted new tissue formation in the wound bed and improved wound strength. Notably, the combined effects of CM + PBM surpassed the individual effects of CM and PBM. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-023-01285-3.

5.
J Lasers Med Sci ; 14: e45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028880

RESUMO

Introduction: In the current study, the effects of photobiomodulation (PBM) treatments were examined based on biomechanical and histological criteria and mRNA levels of catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) 1 and 4 in a postponed, ischemic, and infected wound repair model (DIIWHM) in rats with type 2 diabetes (DM2) during the inflammation (day 4) and proliferation (day 8) stages. Methods: To study ischemic wound repair in a diabetic rat model (DIIWHM), 24 rats with type-2 diabetes were randomly divided into four groups and infected with methicillin-resistant Staphylococcus aureus (MRSA). The control groups consisted of CG4 (control group on day 4) and CG8 (control group on day 8), while the PBM groups comprised PBM4 (PBM treatment group on day 4) and PBM8 (PBM treatment group on day 8). These group assignments allowed for comparisons between the control groups and the PBM-treated groups at their respective time points during the study. Results: On days 4 and 8 of wound restoration, the PBM4 and PBM8 groups showed substantially modulated inflammatory responses and improved formation of fibroblast tissue compared with the CG groups (P<0.05). Concurrently, the effects of PBM8 were significantly superior to those of PBM4 (P<0.05). The antioxidant results on days 4 and 8 revealed substantial increases in CAT and SOD in the PBM groups compared with the CGs (P<0.05). Substantial decreases were observed in the antioxidant agents NOX1 and NOX4 of the PBM4 and PBM8 groups compared with both CGgroups (P<0.05). Conclusion: PBM treatments significantly sped up the inflammatory and proliferating processes in a DHIIWM in DM2 animals by modifying the inflammatory reaction and boosting fibroblast proliferation. Overall, the current findings indicated substantially better results in the PBM groups than in the CG groups.

6.
Photobiomodul Photomed Laser Surg ; 41(10): 539-548, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37788453

RESUMO

Objective: In this study, we aimed to explore the role of MicroRNA-26 in photobiomodulation (PBM)- and adipose-derived stem cell (ADS)-based healing of critical-sized foot fractures in a rat model. Background: PBM and ADS treatments are relatively invasive methods for treating bone defects. Specific and oriented cellular and molecular functions can be induced by applying an appropriate type of PBM and ADS treatment. Methods: A critical size foot defect (CSFD) is induced in femoral bones of 24 rats. Then, a human demineralized bone matrix scaffold (hDBMS) was engrafted into all CSFDs. The rats were randomly allocated into four groups (n = 6): (1) control (hDBMS); (2) hDBMS+human ADSs (hADSs), hADSs engrafted into CSFDs; (3) hDBMS+PBM, CSFD exposed to PBM (810 nm wavelength, 1.2 J/cm2 energy density); and (4) hDBMS+(hADSs+PBM), hADSs implanted into the CSFD and then exposed to PBM. At 42 days after CSFD induction, the rats were killed, and the left CSFD was removed for mechanical compression tests and the right CSFD was removed for molecular and histological studies. Results: The results indicate that miRNA-26a, BMP, SMAD, RUNX, and OSTREX had higher expression in the treated groups than in the control group. Further, the biomechanical and histological properties of CSFDs in treated groups were improved compared with the control group. Correlation tests revealed a positive relationship between microRNA and improved biomechanical and cellular parameters of CSFDs in the rat model. Conclusions: We concluded that the MicroRNA-26 signaling pathway probably plays a significant role in the hADS-, PBM-, and hADS+PBM-based healing of CSFDs in rats. Clinical Trial Registration number: IR.SBMU.MSP.REC.1398.980.


Assuntos
Terapia com Luz de Baixa Intensidade , MicroRNAs , Animais , Ratos , Terapia com Luz de Baixa Intensidade/métodos , MicroRNAs/genética , Células-Tronco , Cicatrização
7.
J Lasers Med Sci ; 14: e16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583493

RESUMO

Introduction: Photobiomodulation treatment (PBMT) is a relatively invasive method for treating wounds. An appropriate type of PBMT can produce desired and directed cellular and molecular processes. The aim of this study was to investigate the impacts of PBMT on stereological factors, bacterial count, and the expression of microRNA-21 and FGF2 in an infected, ischemic, and delayed wound healing model in rats with type one diabetes mellitus. Methods: A delayed, ischemic, and infected wound was produced on the back skin of all 24 DM1 rats. Then, they were put into 4 groups at random (n=6 per group): 1=Control group day4 (CGday4); 2=Control group day 8 (CGday8); 3=PBMT group day4 (PGday4), in which the rats were exposed to PBMT and killed on day 4; 4=PBMT group day8 (PGday8), in which the rats received PBMT and they were killed on day 8. The size of the wound, the number of microbial colonies, stereological parameters, and the expression of microRNA-21 and FGF2 were all assessed in this study throughout the inflammation (day 4) and proliferation (day 8) stages of wound healing. Results: On days 4 and 8, we discovered that the PGday4 and PGday8 groups significantly improved stereological parameters in comparison with the same CG groups. In terms of ulcer area size and microbiological counts, the PGday4 and PGday8 groups performed much better than the same CG groups. Simultaneously, the biomechanical findings in the PGday4 and PGday8 groups were much more extensive than those in the same CG groups. On days 4 and 8, the expression of FGF2 and microRNA-21 was more in all PG groups than in the CG groups (P<0.01). Conclusion: PBMT significantly speeds up the repair of ischemic and MARS-infected wounds in DM1 rats by lowering microbial counts and modifying stereological parameters, microRNA-21, and FGF2 expression.

8.
J Lasers Med Sci ; 14: e18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583498

RESUMO

Introduction: Here, we assess the therapeutic effects of photobiomodulation (PBM) and curcumin (CUR)-loaded superparamagnetic iron oxide nanoparticles (SPIONs), alone or together, on the maturation step of a type 1 diabetes (DM1) rat wound model. Methods: Full-thickness wounds were inflicted in 36 rats with diabetes mellitus (DM) induced by the administration of streptozotocin (STZ). The rats were randomly allocated to four groups. Group one was untreated (control); group two received CUR; group 3 received PBM (890 nm, 80 Hz, 0.2 J/cm2); group 4 received a combination of PBM plus CUR. On days 0, 4, 7, and 15, we measured microbial flora, wound closure fraction, tensile strength, and stereological analysis. Results: All treatment groups showed a substantial escalation in the wound closure rate, a substantial reduction in the count of methicillin-resistant Staphylococcus aureus (MRSA), a substantial improvement in wound strength, a substantially improvement in stereological parameters compared to the control group, however, the PBM+CUR group was superior to the other treatment groups (all, P≤0.05). Conclusion: All treatment groups showed significantly improved wound healing in the DM1 rat model. However, the PBM+CUR group was superior to the other treatment groups and the control group in terms of wound strength and stereological parameters.

9.
Lasers Med Sci ; 38(1): 129, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243832

RESUMO

Diabetic wounds are categorized by chronic inflammation, leading to the development of diabetic foot ulcers, which cause amputation and death. Herewith, we examined the effect of photobiomodulation (PBM) plus allogeneic diabetic adipose tissue-derived stem cells (ad-ADS) on stereological parameters and expression levels of interleukin (IL)-1ß and microRNA (miRNA)-146a in the inflammatory (day 4) and proliferation (day 8) stages of wound healing in an ischemic infected (with 2×107 colony-forming units of methicillin-resistant Staphylococcus aureus) delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. There were five groups of rats: group 1 control (C); group 2 (CELL) in which rat wounds received 1×106 ad-ADS; group 3 (CL) in which rat wounds received the ad-ADS and were subsequently exposed to PBM(890 nm, 80 Hz, 3.5 J/cm2, in vivo); group 4 (CP) in which the ad-ADS preconditioned by the PBM(630 nm + 810 nm, 0.05 W, 1.2 J/cm2, 3 times) were implanted into rat wounds; group 5 (CLP) in which the PBM preconditioned ad-ADS were implanted into rat wounds, which were then exposed to PBM. On both days, significantly better histological results were seen in all experimental groups except control. Significantly better histological results were observed in the ad-ADS plus PBM treatment correlated to the ad-ADS alone group (p<0.05). Overall, PBM preconditioned ad-ADS followed by PBM of the wound showed the most significant improvement in histological measures correlated to the other experimental groups (p<0.05). On days 4 and 8, IL-1 ß levels of all experimental groups were lower than the control group; however, on day 8, only the CLP group was different (p<0.01). On day 4, miR-146a expression levels were substantially greater in the CLP and CELL groups correlated to the other groups, on day 8 miR-146a in all treatment groups was upper than C (p<0.01). ad-ADS plus PBM, ad-ADS, and PBM all improved the inflammatory phase of wound healing in an IIDHWM in TIDM1 rats by reducing inflammatory cells (neutrophils, macrophages) and IL-1ß, and increasing miRNA-146a. The ad-ADS+PBM combination was better than either ad-ADS or PBM alone, because of the higher proliferative and anti-inflammatory effects of the PBM+ad-ADS regimen.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , MicroRNAs , Ratos , Animais , Diabetes Mellitus Experimental/patologia , Ratos Wistar , Cicatrização , Células-Tronco/patologia , Inflamação/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , MicroRNAs/genética
10.
Photochem Photobiol Sci ; 22(8): 1791-1807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37039961

RESUMO

Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared  to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR  treatment  over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control  group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Ratos , Animais , Cicatrização , Ratos Wistar , Curcumina/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
11.
Arch Dermatol Res ; 315(6): 1717-1734, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36808225

RESUMO

We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Ratos , Humanos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Diabetes Mellitus Experimental/metabolismo , Quimiocina CXCL12 , Expressão Gênica , Inflamação , Células-Tronco/metabolismo
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121835, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116412

RESUMO

Herein are reported the effects of photobiomodulation (PBM) on adenosine triphosphate (ATP) and reactive oxygen species (ROS) quantification and mitochondria membrane potential (MMP) of the mitochondria of diabetic adipose-derived stem cells (ADSCs) in vitro. Additionally, the expression of PTEN-induced kinase 1 (PINK1) and RBR E3 ubiquitin-protein ligase (PARKIN) genes, which are involved in mitochondrial quality, were quantified. First, type one diabetes was induced in 10 rats. The rats were then kept for 1 month, after which fat tissue was excised from subcutaneous regions, and stem cells were selected from the fat, characterized as ADSC, and cultivated and increased in elevated sugar conditions in vitro; these samples were considered diabetic-ADSC. Two groups were formed, namely, diabetic-control-ADSC and PBM-diabetic-ADSC. ATP, ROS quantification, and MMP of mitochondria of diabetic ADSCs in vitro were measured, and the expression of PINK1 and Parkin genes was quantified in vitro. The results revealed that PBM significantly increased ATP quantification (p = 0.05) and MMP activity (p = 0.000) in diabetic-ADSCs in vitro compared to the control diabetic-ADSCs; however, it significantly decreased ROS quantification (p = 0.002) and PINK1(p = 0.003) and PARKIN gene expression (p = 0.046) in diabetic-ADSCs. The current findings indicate for the first time that PBM has the potential to maintain the function and quality of mitochondrial diabetic-ADSCs by significantly increasing ATP quantification and MMP activity in diabetic-ADSCs in vitro while significantly decreasing ROS quantification and PINK1 and PARKIN gene expression, making PBM an attractive candidate for use in improving the efficacy of autologous stem cell remedies for diabetic patients with infected diabetic foot ulcers.


Assuntos
Diabetes Mellitus , Células-Tronco , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Lasers Med Sci ; 37(9): 3601-3611, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053389

RESUMO

This experimental study examined the effects of curcumin-loaded iron oxide nanoparticles (CUR), photobiomodulation (PBM), and CUR + PBM treatments on mast cells (MC)s numbers and degranulation, inflammatory cells (macrophages, neutrophils), and wound strength in the last step of the diabetic wound repair process (maturation phase) in a rat model of type one diabetes mellitus (T1DM). T1DM was induced in 24 rats, and 1 month later, an excisional wound was created on each rat's back skin. The rats were then distributed into four groups: (1) untreated diabetic control group (UDCG); (2) rats treated with CUR (CUR); (3) rats exposed to PBM (890 nm, 80 Hz, 0.2 J/cm2) (PBM); (4) rats treated with CUR plus PBM (CUR + PBM). Fifteen days after surgery, skin tissue samples were taken for biomechanical and stereological evaluations. The biomechanical factor of maximum force was observed to be considerably improved in the CUR + PBM (p = 0.000), PBM (p = 0.014), and CUR (p = 0.003) groups compared to the UDCG. CUR + PBM, PBM, and CUR groups had significantly decreased total numbers of MC compared with the UDCG (all, p = 0.001). The results were significantly better in the CUR + PBM (p = 0.000) and PBM (p = 0.003) groups than in the CUR group. Inflammatory cell counts were significantly lower in the CUR + PBM, PBM, and CUR groups than in the UDCG (all, p = 0.0001). In all evaluating methods, the usage of CUR + PBM produced better results than the use of CUR or PBM alone (almost all tests, p = 0.0001). CUR + PBM, PBM, and CUR significantly improved the repair of diabetic skin wounds in type 1 DM rats through significant decreases of MC number, degranulation, and inflammatory cells as well as a noteworthy improvement in wound strength. The impact of CUR + PBM was superior to that of either PBM or CUR alone. It is suggested that CUR + PBM could be used as a MC stabilizer for the effective treatment of some related human diseases.


Assuntos
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Terapia com Luz de Baixa Intensidade , Ratos , Humanos , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Cicatrização , Ratos Wistar , Nanopartículas Magnéticas de Óxido de Ferro
14.
Lasers Med Sci ; 37(8): 3297-3308, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006574

RESUMO

The single and associated impressions of photobiomodulation (PBM) and adipose-derived stem cells (ADS) on stereological parameters (SP), and gene expression (GE) of some antioxidant and oxidative stressors of repairing injured skin at inflammation and proliferation steps (days 4 and 8) of a delayed healing, ischemic, and infected wound model (DHIIWM) were examined in type one diabetic (DM1) rats. DM1 was induced by administration of streptozotocin (40 mg/kg) in 48 rats. The DHIIWM was infected by methicillin-resistant Staphylococcus aureus (MRSA). The study comprised 4 groups (each, n = 6): Group 1 was the control group (CG). Group 2 received allograft human (h) ADSs transplanted into the wound. In group 3, PBM (890 nm, 80 Hz, 0.2 J/cm2) was emitted, and in group 4, a combination of PBM+ADS was used. At both studied time points, PBM+ADS, PBM, and ADS significantly decreased inflammatory cell count (p < 0.05) and increased granulation tissue formation compared to CG (p < 0.05). Similarly, there were lower inflammatory cells, as well as higher granulation tissue in the PBM+ADS compared to those of alone PBM and ADS (all, p < 0.001). At both studied time points, the GE of catalase (CAT) and superoxide dismutase (SOD) was remarkably higher in all treatment groups than in CG (p < 0.05). Concomitantly, the outcomes of the PBM+ADS group were higher than the single effects of PBM and ADS (p < 0.05). On day 8, the GE of NADPH oxidase (NOX) 1 and NOX4 was substantially less in the PBM+ADS than in the other groups (p < 0.05). PBM+ADS, PBM, and ADS treatments significantly accelerated the inflammatory and proliferative stages of wound healing in a DIIWHM with MRSA in DM1 rats by decreasing the inflammatory response, and NOX1 and 4 as well; and also increasing granulation tissue formation and SOD and CAT. The associated treatment of PBM+ADS was more effective than the individual impacts of alone PBM and ADS because of the additive anti-inflammatory and proliferative effects of PBM plus ADS treatments.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Transplante de Células-Tronco , Aloenxertos , Animais , Antioxidantes , Catalase , Diabetes Mellitus Experimental/radioterapia , Humanos , Isquemia , Staphylococcus aureus Resistente à Meticilina , NADPH Oxidases , Estresse Oxidativo , Ratos , Ratos Wistar , Células-Tronco , Estreptozocina/efeitos adversos , Superóxido Dismutase
15.
J Lasers Med Sci ; 13: e10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35996492

RESUMO

Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.

16.
Lasers Med Sci ; 37(5): 2457-2470, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35067818

RESUMO

We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.


Assuntos
Osso e Ossos , Subunidade alfa 1 de Fator de Ligação ao Core , Terapia com Luz de Baixa Intensidade , Células-Tronco , Tecido Adiposo/citologia , Animais , Proteína Morfogenética Óssea 4 , Osso e Ossos/lesões , Quimiocina CXCL12 , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expressão Gênica , Humanos , RNA Mensageiro , Ratos
17.
Lasers Med Sci ; 37(3): 1593-1604, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34476655

RESUMO

Herein, we report the influence of administering different protocols of preconditioned diabetic adipose-derived mesenchymal stem cells (ADSs) with photobiomodulation in vitro, and photobiomodulation in vivo on the number of mast cells (MCs), their degranulation, and wound strength in the maturation step of a Methicillin-resistant Staphylococcus aureus (MRSA)-infectious wound model in rats with type one diabetes. An MRSA-infectious wound model was generated on diabetic animals, and they were arbitrarily assigned into five groups (G). G1 were control rats. In G2, diabetic ADS were engrafted into the wounds. In G3, diabetic ADS were engrafted into the wound, and the wound was exposed to photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) in vivo. In G4, preconditioned diabetic ADS with photobiomodulation (630 and 810 nm; each 3 times with 1.2 J/cm2) in vitro were engrafted into the wound. In G5, preconditioned diabetic ADS with photobiomodulation were engrafted into the wound, and the wound was exposed to photobiomodulation in vivo. The results showed that, the maximum force in all treatment groups was remarkably greater compared to the control group (all, p = 0.000). Maximum force in G4 and G5 were superior than that other treated groups (both p = 0.000). Moreover, G3, G4, and G5 showed remarkable decreases in completely released MC granules and total numbers of MC compared to G1 and G2 (all, p = 0.000). We concluded that diabetic rats in group 5 showed significantly better results in terms of accelerated wound healing and MC count of an ischemic infected delayed healing wound model.


Assuntos
Diabetes Mellitus Experimental , Terapia com Luz de Baixa Intensidade , Staphylococcus aureus Resistente à Meticilina , Animais , Terapia com Luz de Baixa Intensidade/métodos , Mastócitos , Ratos , Ratos Wistar , Células-Tronco
18.
Lasers Med Sci ; 31(4): 721-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26964799

RESUMO

Osteoporosis (OP) and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. Previous studies have shown that pulsed wave low-level laser therapy (PW LLLT) has osteogenic effects. This study intended to evaluate the impacts of PW LLLT on the cortical bone of osteoporotic rats' tibias in two experimental models, ovariectomized and dexamethasone-treated. We divided the rats into four ovariectomized induced OP (OVX-d) and four dexamethasone-treated (glucocorticoid-induced OP, GIOP) groups. A healthy (H) group of rats was considered for baseline evaluations. At 14 weeks following ovariectomy, we subdivided the OVX-d rats into the following groups: (i) control which had OP, (ii) OVX-d rats treated with alendronate (1 mg/kg), (iii) OVX-d rats treated with LLLT, and (iv) OVX-d rats treated with alendronate and PW LLLT. The remaining rats received dexamethasone over a 5-week period and were also subdivided into four groups: (i) control rats treated with intramuscular (i.m.) injections of distilled water (vehicle), (ii) rats treated with subcutaneous alendronate injections (1 mg/kg), (iii) laser-treated rats, and (iv) rats simultaneously treated with laser and alendronate. The rats received alendronate for 30 days and underwent PW LLLT (890 nm, 80 Hz, 0.972 J/cm(2)) three times per week during 8 weeks. Then, the right tibias were extracted and underwent a stereological analysis of histological parameters and real-time polymerase chain reaction (RT-PCR). A significant increase in cortical bone volume (mm(3)) existed in all study groups compared to the healthy rats. There were significant decreases in trabecular bone volume (mm(3)) in all study groups compared to the group of healthy rats. The control rats with OP and rats from the vehicle group showed significantly increased osteoclast numbers compared to most other groups. Alendronate significantly decreased osteoclast numbers in osteoporotic rats. Concurrent treatments (compounded by PW LLLT and alendronate) produce the same effect on osteoporotic bone.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteoporose/radioterapia , Tíbia/efeitos da radiação , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Regeneração Óssea/efeitos da radiação , Diáfises/efeitos da radiação , Feminino , Humanos , Masculino , Osteogênese , Osteoporose/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Tíbia/patologia , Transcriptoma
19.
Lasers Med Sci ; 31(2): 305-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26719056

RESUMO

Osteoporosis (OP) increases vertebral fragility as a result of the biomechanical effects of diminished bone structure and composition. This study has aimed to assess the effects of pulsed wave low-level laser therapy (PW LLLT) on cancellous bone strength of an ovariectomized (OVX-d) experimental rat model and a glucocorticoid-induced OP (GIOP) experimental rat model. There were four OVX-d groups and four dexamethasone-treated groups. A group of healthy rats was used for baseline evaluations. The OVX-d rats were further subdivided into the following groups: control rats with OP, OVX-d rats that received alendronate, OVX-d rats treated with PW LLLT, and OVX-d rats treated with alendronate and PW LLLT. The remaining rats received dexamethasone and were divided into four groups: control, alendronate-treated rats, laser-treated rats, and laser-treated rats with concomitant administration of alendronate. PW LLLT (890 nm, 80 Hz, 0.972 J/cm(2)) was performed on the spinal processes of the T12, L1, L2, and L3 vertebras. We extracted the L1 vertebrae and submitted them to a mechanical compression test. Biomechanical test findings showed positive effects of the PW LLLT and alendronate administration on increasing bending stiffness and maximum force of the osteoporotic bones compared to the healthy group. However, laser treatment of OVA-d rats significantly increased stress high load compared to OVA-d control rats. PW LLLT preserved the cancellous (trabecular) bone of vertebra against the detrimental effects of OV-induced OP on bone strength in rats compared to control OV rats.


Assuntos
Terapia com Luz de Baixa Intensidade , Fenômenos Mecânicos , Osteoporose/fisiopatologia , Osteoporose/radioterapia , Coluna Vertebral/fisiopatologia , Coluna Vertebral/efeitos da radiação , Alendronato/uso terapêutico , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos da radiação , Feminino , Glucocorticoides/efeitos adversos , Masculino , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Ovariectomia , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/efeitos dos fármacos
20.
Iran Red Crescent Med J ; 17(12): e32076, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26759725

RESUMO

BACKGROUND: Fractures pose a major worldwide challenge to public health, causing tremendous disability for the society and families. According to recent studies, many in vivo and in vitro experiments have shown the positive effects of PW LLLT on osseous tissue. OBJECTIVES: The aim of this study was to evaluate the outcome of infrared pulsed wave low-level laser therapy (PW LLLT) on the fracture healing process in a complete tibial osteotomy in a rat model, which was stabilized by an intramedullary pin. MATERIALS AND METHODS: This experimental study was conducted at Shahid Beheshti University of Medical Sciences in Tehran, Iran. We performed complete tibial osteotomies in the right tibias for the population of 15 female rats. The rats were divided randomly into three different groups: I) Control rats with untreated bone defects; II) Rats irradiated by a 0.972 J/cm(2) PW LLLT; and III) Rats irradiated by a 1.5 J/cm(2) PW LLLT. The right tibias were collected six weeks following the surgery and a three-point bending test was performed to gather results. Immediately after biomechanical examination, the fractured bones were prepared for histological examinations. Slides were examined using stereological method. RESULTS: PW LLLT significantly caused an increase in maximum force (N) of biomechanical repair properties for osteotomized tibias in the first and second laser groups (30.0 ± 15.9 and 32.4 ± 13.8 respectively) compared to the control group (8.6 ± 4.5) LSD test, P = 0.019, P = 0.011 respectively). There was a significant increase in the osteoblast count of the first and second laser groups (0.53 ± 0.06, 0.41 ± 0.06 respectively) compared to control group (0.31 ± 0.04) (LSD test, P = 0001, P = 0.007 respectively). CONCLUSIONS: This study confirmed the efficacy of PW LLLT on biomechanical strength, trabecular bone volume, callus volume, and osteoblast number of repairing callus in a complete tibial osteotomy animal model at a relatively late stage of the bone healing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...