Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Nat Hazards ; 1(1): 6, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720873

RESUMO

The flood depth in a structure is a key factor in flood loss models, influencing the estimation of building and contents losses, as well as overall flood risk. Recent studies have emphasized the importance of determining the damage initiation point (DIP) of depth-damage functions, where the flood damage is assumed to initiate with respect to the first-floor height of the building. Here we investigate the effects of DIP selection on the flood risk assessment of buildings located in Special Flood Hazard Areas. We characterize flood using the Gumbel extreme value distribution's location (µ) and scale (α) parameters. Results reveal that average annual flood loss (AAL) values do not depend on µ, but instead follow an exponential decay pattern with α when damage initiates below the first-floor height of a building (i.e., negative DIP). A linear increasing pattern of the AAL with α is achieved by changing the DIP to the first-floor height (i.e., DIP = 0). The study also demonstrates that negative DIPs have larger associated AAL, thus contributing substantially to the overall AAL, compared to positive DIPs. The study underscores the significance of proper DIP selection in flood risk assessment.

2.
Int J Environ Res ; 18(2): 29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495553

RESUMO

Special flood hazard areas (SFHAs), defined as having an annual probability of occurrence of 1 percent or above, are used by U.S. Federal Emergency Management Agency (FEMA) to demarcate areas within which flood insurance purchase is required to secure a mortgage. However, quantifying flood risk within SFHAs can be challenging due to the lack of modeled flood depth data for all return periods. To address this issue, this research quantifies flood risk indicated by average annual loss (AAL) within the A Zone-the subset of the SFHA where wave heights can potentially range from 0 to 3 feet. The methodology resolves the Gumbel quantile function for four distinct flooding cases (i.e., locations flooded at return periods exceeding 1.58-, 10-, 25-, and 50-year return period events) and generates synthetic flood hazard parameters for these cases within the 100-year floodplain, as well as with additional elevation above the base flood elevation (BFE), known as freeboard, for single-family homes with different attributes. The results indicate that for single-family homes in the A Zone, with the lowest floor elevated to the BFE, the AAL ranges from 0.3 to 1 percent of the building replacement cost value. Adding one foot of freeboard reduces flood risk by over 90% if the annual flood risk is between the minimum and 25th percentiles and the 100-year flood depth is less than two feet. The demonstrated approach helps enhance flood resilience in the A Zone, demonstrating the feasibility of proactive measures to protect communities. Supplementary Information: The online version contains supplementary material available at 10.1007/s41742-024-00577-7.

3.
Front Big Data ; 5: 1022900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36579350

RESUMO

Model output of localized flood grids are useful in characterizing flood hazards for properties located in the Special Flood Hazard Area (SFHA-areas expected to experience a 1% or greater annual chance of flooding). However, due to the unavailability of higher return-period [i.e., recurrence interval, or the reciprocal of the annual exceedance probability (AEP)] flood grids, the flood risk of properties located outside the SFHA cannot be quantified. Here, we present a method to estimate flood hazards that are located both inside and outside the SFHA using existing AEP surfaces. Flood hazards are characterized by the Gumbel extreme value distribution to project extreme flood event elevations for which an entire area is assumed to be submerged. Spatial interpolation techniques impute flood elevation values and are used to estimate flood hazards for areas outside the SFHA. The proposed method has the potential to improve the assessment of flood risk for properties located both inside and outside the SFHA and therefore to improve the decision-making process regarding flood insurance purchases, mitigation strategies, and long-term planning for enhanced resilience to one of the world's most ubiquitous natural hazards.

4.
Front Big Data ; 5: 1009158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700138

RESUMO

The tropospheric circumpolar vortex (CPV), an important signature of processes steering the general atmospheric circulation, surrounds each pole and is linked to the surface weather conditions. The CPV can be characterized by its area and circularity ratio (R c ), which both vary temporally. This research advances previous work identifying the daily 500-hPa Northern Hemispheric CPV (NHCPV) area, R c , and temporal trends in its centroid by examining linear trends and periodic cycles in NHCPV area and R c (1979-2017). Results suggest that NHCPV area has increased linearly over time. However, a more representative signal of the planetary warming may be the temporally weakening gradient which has blurred NHCPV distinctiveness-perhaps a new indicator of Arctic amplification. R c displays opposing trends in subperiods and an insignificant overall trend. Distinct annual and semiannual cycles exist for area and R c over all subperiods. These features of NHCPV change over time may impact surface weather/climate.

5.
Front Big Data ; 5: 997447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700139

RESUMO

Evaluating flood risk is an essential component of understanding and increasing community resilience. A robust approach for quantifying flood risk in terms of average annual loss (AAL) in dollars across multiple homes is needed to provide valuable information for stakeholder decision-making. This research develops a computational framework to evaluate AAL at the neighborhood level by owner/occupant type (i.e., homeowner, landlord, and tenant) for increasing first-floor height (FFH). The AAL values were calculated here by numerically integrating loss-exceedance probability distributions to represent economic annual flood risk to the building, contents, and use. A simple case study for a census block in Jefferson Parish, Louisiana, revealed that homeowners bear a mean AAL of $4,390 at the 100-year flood elevation (E 100), compared with $2,960, and $1,590 for landlords and tenants, respectively, because the homeowner incurs losses to building, contents, and use, rather than only two of the three, as for the landlord and tenant. The results of this case study showed that increasing FFH reduces AAL proportionately for each owner/occupant type, and that two feet of additional elevation above E 100 may provide the most economically advantageous benefit. The modeled results suggested that Hazus Multi-Hazard (Hazus-MH) output underestimates the AAL by 11% for building and 15% for contents. Application of this technique while partitioning the owner/occupant types will improve planning for improved resilience and assessment of impacts attributable to the costly flood hazard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...