Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Health Serv Res ; 24(1): 168, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321452

RESUMO

BACKGROUND: Emergency Medical Service (EMS) is a very crucial aspect of the healthcare system in providing urgent management and transportation of patients during emergencies. The sustainability of the services is however greatly impacted by the quality and age of ambulances. While this has led to numerous replacement policy recommendations, the implementations are often limited due to a lack of evidence and financial constraints. This study thus aims to develop a cost-effectiveness model and testing the model by evaluating the cost-effectiveness of 10-year and 15-year compulsory ambulance replacement strategies in public healthcare for the Malaysian Ministry of Health (MOH). METHODS: A Markov model was developed to estimate the cost and outcomes ambulance replacement strategies over a period of 20 years. The model was tested using two alternative strategies of 10-year and 15-year. Model inputs were derived from published literature and local study. Model development and economic analysis were accomplished using Microsoft Excel 2016. The outcomes generated were costs per year, the number of missed trips and the number of lives saved, in addition to the Incremental Cost-Effectiveness Ratio (ICER). One-Way Deterministic Sensitivity Analysis (DSA) and Probabilistic Sensitivity Analysis (PSA) were conducted to identify the key drivers and to assess the robustness of the model. RESULTS: Findings showed that the most expensive strategy, which is the implementation of 10 years replacement strategy was more cost-effective than 15 years ambulance replacement strategy, with an ICER of MYR 11,276.61 per life saved. While an additional MYR 13.0 million would be incurred by switching from a 15- to 10-year replacement strategy, this would result in 1,157 deaths averted or additional live saved per year. Sensitivity analysis showed that the utilization of ambulances and the mortality rate of cases unattended by ambulances were the key drivers for the cost-effectiveness of the replacement strategies. CONCLUSIONS: The cost-effectiveness model developed suggests that an ambulance replacement strategy of every 10 years should be considered by the MOH in planning sustainable EMS. While this model may have its own limitation and may require some modifications to suit the local context, it can be used as a guide for future economic evaluations of ambulance replacement strategies and further exploration of alternative solutions.


Assuntos
Ambulâncias , Serviços Médicos de Emergência , Humanos , Análise Custo-Benefício , Malásia
2.
Int J Biol Macromol ; 253(Pt 8): 127518, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865379

RESUMO

Cotton thread therapeutic properties as a wound dressing can be enhanced by utilising carboxymethyl cellulose-nanoparticles (CMC/NPs) colloidal solution as a coating solution. Nanoparticles such as graphene oxide (GO), graphene quantum dots (GQD), and silver nanoparticles (AgNP) stability in CMC was investigated through the rheological analysis and UV-Vis spectroscopy of the colloidal solutions. Citric acid (CA) acted as a crosslinker and was utilised to crosslink the colloidal solution with cotton thread. These CMC/NPs coated threads were subjected to mechanical properties and antibacterial activity analysis. Results obtained indicate less nanoparticle agglomeration and were stable in the CMC-based nanofluid. CMC/NPs rheological study suggested that colloidal solutions exhibited shear thinning behaviour and behaved as non-Newtonian fluids with n < 1. Crosslinked CMC/NPs appeared in a gel-like state as the viscoelasticity of the solution increased. Among the colloidal solutions, CMC/AgNP showed the highest enhancement with a significant difference at p < 0.05 in terms of mechanical and antibacterial properties. Consequently, the rheological properties and stability of CMC/NPs might influence the coating solution's appearance and refine the cotton thread's microstructure for a functional wound dressing to be further utilised as a coating solution for antibacterial cotton thread wound dressing material.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Carboximetilcelulose Sódica/química , Prata , Antibacterianos/farmacologia , Bandagens
3.
Polymers (Basel) ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616578

RESUMO

Macro-size regenerated cellulose fibres (RCFs) with embedded graphene oxide (GO) were fabricated by dissolving cellulose in a pre-cooled sodium hydroxide (NaOH)/urea solution and regenerated in sulphuric acid (H2SO4) coagulant. Initially, GO was found to disperse well in the cellulose solution due to intercalation with the cellulose; however, this cellulose-GO intercalation was disturbed during the regeneration process, causing agglomeration of GO in the RCF mixture. Agglomerated GO was confirmed at a higher GO content under a Dino-Lite microscope. The crystallinity index (CrI) and thermal properties of the RCFs increased with increasing GO loadings, up to 2 wt.%, and reduced thereafter. Cellulose-GO intercalation was observed at lower GO concentrations, which enhanced the crystallinity and thermal properties of the RCF-GO composite. It was shown that the GO exhibited antibacterial properties in the RCF-GO composite, with the highest bacterial inhibition against E. coli and S. aureus.

4.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335548

RESUMO

The oldest preservation techniques used are drying techniques, which are employed to remove moisture and prevent microorganisms' growths, prolonging a material's shelf life. This study evaluates the effects of drying methods on carboxymethyl cellulose (CMC) + citric acid (CA) coating layers on cotton threads. For this reason, cotton threads were washed and then coated with different layers of CMC cross-linked with CA, followed by drying using an oven (OD), infrared (IR), and a combination of oven + IR (OIR) drying methods at 65 °C. Our investigations revealed that CMC + CA yields a pliable biopolymer. The differences in drying regimes and coating layers of CMC + CA have a significant effect on the coated cotton thread strength and absorption capability. The study concluded that the IR drying regime is more effective to dry a single-layered cotton thread with a single layer of CMC + CA coating to enhance desirable properties for wound dressing modification.

5.
Polymers (Basel) ; 13(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34577973

RESUMO

Development of polyurethane foam (PUF) containing bio-based components is a complex process that requires extensive studies. This work reports on the production of rigid PUFs from polyol obtained via liquefaction of oil palm empty fruit bunch (EFB) biomass with different isocyanate (NCO) indexes. The effect of the NCO index on the physical, chemical and compressive properties of the liquefied EFB-based PUF (EFBPUF) was evaluated. The EFBPUFs showed a unique set of properties at each NCO index. Foaming properties had affected the apparent density and cellular morphology of the EFBPUFs. Increasing NCO index had increased the crosslink density and dimensional stability of the EFBPUFs via formation of isocyanurates, which had also increased their thermal stability. Combination of both foaming properties and crosslink density of the EFBPUFs had influenced their respective compressive properties. The EFBPUF produced at the NCO index of 120 showed the optimum compressive strength and released the least toxic hydrogen cyanide (HCN) gas under thermal degradation. The normalized compressive strength of the EFBPUF at the NCO index of 120 is also comparable with the strength of the PUF produced using petrochemical polyol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...