Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607136

RESUMO

In this study, we used multilayer graphene oxide (GO) obtained by anodic oxidation of graphite powder in 83% sulfuric acid. The modification of GO was carried out by its interaction with hexamethylenediamine (HMDA) according to the mechanism of nucleophilic substitution between the amino group of HMDA (HMDA) and the epoxy groups of GO, accompanied by partial reduction of multilayer GO and an increase in the deformation of the carbon layers. The structure and properties of modified HMDA-GO were characterized using research methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy and Raman spectroscopy. The conducted studies show the effectiveness of using HMDA-OG for modifying epoxy composites. Functionalizing treatment of GO particles helps reduce the free surface energy at the polymer-nanofiller interface and increase adhesion, which leads to the improvement in physical and mechanical characteristics of the composite material. The results demonstrate an increase in the strength and elastic modulus in bending by 48% and 102%, respectively, an increase in the impact strength by 122%, and an increase in the strength and elastic modulus in tension by 82% and 47%, respectively, as compared to the pristine epoxy composite which did not contain GO-HMDA. It has been found that the addition of GO-HMDA into the epoxy composition initiates the polymerization process due to the participation of reactive amino groups in the polymerization reaction, and also provides an increase in the thermal stability of epoxy nanocomposites.

2.
Polymers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399827

RESUMO

This paper presents a study on the prospects of functionalizing nanodiamonds (NDs) with aminoacetic acid to obtain high-strength composites based on an epoxy matrix. The impact of the functionalization of the ND surface with aminoacetic acid in various concentrations on the properties of the epoxy composite was assessed. The success of grafting amine onto the ND surface was confirmed by X-ray phase analysis and IR spectroscopy. The results show a significant decrease in the average size of ND particles, from 400 nm for the pristine ones to 35 nm, and the contact angle, from 27° to 22°, with an increase in the specific surface area after treatment with a 5% solution of aminoacetic acid. Reducing the average size of NDs allows them to be better distributed throughout the epoxy matrix, which, as a result of the formation of chemical interaction at the matrix-nanofiller phase interface, can significantly increase the strength of the obtained composite. The addition of NDs treated with aminoacetic acid ensures an increase in the deformation-strength properties of epoxy composites by 19-23% relative to an epoxy composite containing the pristine NDs. Moreover, the presence of functionalized NDs significantly influences the structure and thermal stability of the epoxy nanocomposite.

3.
Polymers (Basel) ; 15(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177172

RESUMO

The purpose of this work is to study the influence of the electric field strength of an electromagnetic wave with the maximum modifying effect on an epoxy basalt-filled oligomer, which is of great scientific and practical importance for the development of microwave oligomer modification technology. The optimal modes of microwave modification, under which the highest values of the mechanical properties of an epoxy basalt-filled polymer composite material are obtained, are identified: power of 400 W and an exposure time of 24 s. At the same time, the breaking stress in bending increases by 20%, the impact strength increases by 2 times, and hardness increases by 31%. A slight increase of 4.5% in heat resistance is noted compared to the composite obtained on the basis of an oligomer unmodified in the microwave electromagnetic field. The results of resistance to various aggressive environments are obtained, which show that the studied physical and mechanical characteristics of the epoxy basalt-filled material after exposure to an aggressive environment decrease by less than 14%, which corresponds to their good resistance to an aggressive environment. It is established that the effect of the microwave electromagnetic field on an epoxy basalt-filled oligomer is an effective modification method that improves physical and mechanical characteristics with a high level of temporal stability to climatic influences, with a coefficient of property retention of more than 90%.

4.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365588

RESUMO

The possibility of using microwave radiation at various stages of obtaining an unsaturated polyester composite modified with carbon nanotubes was studied. The optimal content of MWCNTs in the system was experimentally selected, having the best effect on the strength of the composite. The effect of the microwave field on the properties of a polyester composite during the microwave treatment of an oligomer, a polymerized composite, and MWCNTs before their addition into the oligomer was studied. The processes of the structure formation, the structure of the composite, the effect of the microwave radiation on MWCNTs, and the thermal stability of the resulting composites were considered.

5.
Polymers (Basel) ; 14(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35054744

RESUMO

The possibility of using graphene oxide as a modifying additive for polymer fiber-reinforced composites based on epoxy resin and basalt roving has been studied. The content of graphene oxide in the system has been experimentally selected, which has the best effect on the physico-mechanical properties of the obtained polymer composite material. The efficiency of the modification of the graphene oxide surface with APTES finishing additives and aminoacetic acid, which provides chemical interaction at the polymer matrix-filler interface, has been considered. The influence of graphene oxide and functionalizing additives on the polymer curing process was investigated using the thermometric method and differential scanning calorimetry.

6.
Materials (Basel) ; 14(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640012

RESUMO

Nickel-based composite electrochemical coatings (CEC) modified with multilayer graphene oxide (GO) were obtained from a sulfate-chloride electrolyte in the reverse electrolysis mode. The microstructure of these CECs was investigated by X-ray phase analysis and scanning electron microscopy. The corrosion-electrochemical behavior of nickel-GO composite coatings in a 0.5 M solution of H2SO4was studied. Tests in a 3.5% NaCl solution showed that the inclusion of GO particles into the composition of electrolytic nickel deposits makes their corrosion rate 1.40-1.50 times less.

7.
Polymers (Basel) ; 13(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372024

RESUMO

The aim of this paper is to study the effect of a polyfunctional modifier oligo (resorcinol phenyl phosphate) with terminal phenyl groups and a dispersed mineral filler, diorite, on the physicochemical and deformation-strength properties of epoxy-based composites. The efficiency of using diorite as an active filler of an epoxy polymer, ensuring an increase in strength and a change in the physicochemical properties of epoxy composites, has been proven. We selected the optimal content of diorite both as a structuring additive and as a filler in the composition of the epoxy composite (0.1 and 50 parts by mass), at which diorite reinforces the epoxy composite. It has been found that the addition of diorite into the epoxy composite results in an increase in the Vicat heat resistance from 132 to 140-188 °C and increases the thermal stability of the epoxy composite, which is observed in a shift of the initial destruction temperature to higher temperatures. Furthermore, during the thermal destruction of the composite, the yield of carbonized structures increases (from 54 to 70-77% of the mass), preventing the release of volatile pyrolysis products into the gas phase, which leads to a decrease in the flammability of the epoxy composite. The efficiency of the functionalization of the diorite surface with APTES has been proven, which ensures chemical interaction at the polymer matrix/filler interface and also prevents the aggregation of diorite particles, which, in general, provides an increase in the strength characteristics of epoxy-based composite materials by 10-48%.

8.
Polymers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823547

RESUMO

In this article, amino functionalized multiwalled carbon nanotubes (MWCNTs) were prepared by chemical modification of the surface of a MWCNTs using γ-aminopropyltriethoxysilane (APTES) and dispersed into the epoxy composition. The modifying agent (APTES) was directly deposited on the MWCNTs surfaces. For the functionalization of MWCNTs, was used not the APTES concentrate, as it had been described in previous works, but its freshly prepared aqueous solution. Properties of APTES-treated MWCNTs were characterized by transmission electron microscope (TEM), Raman spectroscopy and FT-IR. The results showed that the functionalization and chemical compatibility of APTES-treated MWCNTs with epoxy composition provides their best dispersion in the epoxy composition, had important influence on curing behavior, structure and physicochemical properties of the epoxy composites plasticized with trichloroethyl phosphate. The results showed that the functionalization and chemical compatibility of APTES-treated MWCNTs with epoxy composition provides increased of physicomechanical properties of epoxy composites: bending stress increases by 194% and bending modulus increases by 137%, the tensile strength increases by 108% and the tensile elastic modulus increases by 52%, impact strength increases by 300%, in comparison with plasticized epoxy composite that does not contain MWCNTs.

9.
Polymers (Basel) ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605091

RESUMO

The conducted studies have proven the possibility of the directed control of operational properties of epoxy composites, due to the addition of finely-ground ocher into their composition, and the use of microwave modification of the epoxy composition. The rational content of ocher as a modifying additive (0.5 parts by mass) and a filler (75 parts by mass) of the epoxy composition has been selected, which ensures the improvement of the studied complex of physical-mechanical properties. It has been proven that ocher affects the structure formation processes and the structure of the epoxy composite, thus increasing its thermal, heat and fire resistance. During the research, the application efficiency has been proven, and the optimal parameters of the microwave modification (power-350 W; duration-30 s) of epoxy compositions filled with ocher, which increase physical-mechanical characteristics of composites, have been selected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...