Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 94(4): 045002, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783564

RESUMO

Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.

2.
Phys Rev Lett ; 87(26): 265001, 2001 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-11800835

RESUMO

We report the first direct experimental observation of the ablative Richtmyer-Meshkov instability. It manifests itself in oscillations of areal mass that occur during the shock transit time, which are caused by the "rocket effect" or dynamic overpressure characteristic of interaction between the laser absorption zone and the ablation front. With the 4-ns-long Nike KrF laser pulse and our novel diagnostic technique (monochromatic x-ray imaging coupled to a streak camera) we were able to register a peak and a valley of the areal-mass variation before the observed onset of the Rayleigh-Taylor growth.

3.
Phys Rev Lett ; 87(26): 265002, 2001 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-11800836

RESUMO

"Feedout" means the transfer of mass perturbations from the rear to the front surface of a driven target. When a planar shock wave breaks out at a rippled rear surface of the target, a lateral pressure gradient drives sonic waves in a rippled rarefaction wave propagating back to the front surface. This process redistributes mass in the volume of the target, forming the feedout-generated seed for ablative Rayleigh-Taylor (RT) instability. We report the first direct experimental observation of areal-mass oscillation associated with feedout, followed by the onset of exponential RT growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...