Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 13018-13028, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38440984

RESUMO

Fog formation is a common challenge for numerous applications, such as food packaging, mirrors, building windows, and freezer/refrigerator doors. Most notably, fog forms on the inner surfaces of prescription glasses and safety eyewear (particularly when used with a mask), face shields, and helmet lenses. Fogging is caused by the distortion of light from condensed water droplets present on a surface and can typically be prevented if the surface static water contact angle (θ) is less than ∼40°. Such a low contact angle can be readily achieved by either increasing the substrate surface energy or by engineering surface nanotexture. Unfortunately, such nanotexture can be readily damaged with use, while high surface energy substrates get covered with low surface energy foulants over time. Consequently, even with numerous ephemeral antifog coatings, currently there are no commercially available, durable, and permanent antifog coatings. Here we discuss the development of a new class of high-performance antifog coatings that are abrasion-resistant and long-lasting. These polyvinylpyrrolidone-based coatings, designed based on the classical Ratner-Lancaster wear model, dramatically outperform the base polymer, as well as all tested commercially available antifog coatings. Specifically, these coatings exhibit a > 400% increase in fogging time compared to base polymer, a > 50,000% increase in wear resistance, and excellent long-term antifog performance. The developed coatings also significantly outperformed all tested commercially available antifog coatings in terms of their antifog performance, wear resistance, and long-term cyclical performance. Additionally, the key design strategies employed here─incorporation of toughening agents and hydrophilic slip additives─offer a new approach to developing high-performance, durable antifog coatings based on other well-known antifog polymers.

2.
ACS Appl Mater Interfaces ; 13(51): 61620-61628, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34908405

RESUMO

Natural and synthetic polymeric fibers are used extensively in making fabrics for a variety of civilian and military applications. Due to the durability and comfort, nyco, a 50-50% blend of nylon 66 and cotton, is used as the material of choice in many applications including military uniforms. This fabric is flammable due to the presence of cotton and nylon but has good mechanical properties and is comfortable to wear. Here, we report a novel surface functionalization method that utilizes a synergistic combination of bio-based materials, tannic acid (TA) and phytic acid (PA), to impart flame-retardant (FR) properties to the nyco fabric. TA and PA were sequentially attached to nylon and cotton fibers through hydrogen bonding interactions and phosphorylation, respectively. The surface functionalization of the treated fabrics was confirmed using Fourier-transform infrared spectroscopy. Thermogravimetric analysis, microscale combustion calorimetry, cone calorimetry, and vertical flame testing were employed to study the effect of the functionalization on the thermal stability and flammability of the nyco fabric. Though reasonable durable functionalization is observed from elemental analysis, it is not enough to impart wash-durable FR treatment. These results indicate that flame retardancy is enabled through the enhanced char formation provided by the combination of TA and PA. The TA-PA system applied to nyco shows great promise as a bio-based FR system. This study for the first time also provides evidence for the selectivity of TA in imparting FR characteristics for nylon and PA in imparting FR properties for cotton. The combination of TA and PA provides promising FR characteristics to nyco.

3.
Chem Soc Rev ; 45(24): 6855-6887, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27785498

RESUMO

Enzymes, being remarkable catalysts, are capable of accepting a wide range of complex molecules as substrates and catalyze a variety of reactions with a high degree of chemo-, stereo- and regioselectivity in most of the reactions. Biocatalysis can be used in both simple and complex chemical transformations without the need for tedious protection and deprotection chemistry that is very common in traditional organic synthesis. This current review highlights the applicability of one class of biocatalysts viz."lipases" in synthetic transformations, the resolution of pharmaceutically important small molecules including polyphenols, amides, nucleosides and their precursors, the development of macromolecular systems (and their applications as drug/gene carriers), flame retardants, polymeric antioxidants and nanocrystalline solar cells, etc.


Assuntos
Biocatálise , Lipase/química , Substâncias Macromoleculares/síntese química , Amidas/síntese química , Antioxidantes/síntese química , Portadores de Fármacos/síntese química , Retardadores de Chama/síntese química , Humanos , Nanoestruturas/química , Nucleosídeos/síntese química , Polifenóis/síntese química , Energia Solar
5.
Inorg Chem ; 42(18): 5450-2, 2003 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-12950182

RESUMO

We have synthesized a fully conjugated aromatic bridging ligand, tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2' ",3'"-j]phenazine (tpphz), and a dinuclear ruthenium complex using Hematin as a biocatalyst.


Assuntos
Fenazinas/química , Piridinas/química , Compostos de Rutênio/química , Catálise , Ligantes , Modelos Moleculares , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...