Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 193-200, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128268

RESUMO

Oxygen interaction with the carbon surface is one of the most important topics of study in the field of material chemistry. In this work, experimental evidence for molecular oxygen dissociative chemisorption on a carbon surface at room temperature is shown for the first time. It was determined that the process occurs only on the bare carbon surface, and the quantitative description of the phenomena is possible using the Temkin model, which explains an almost linear decrease in the calorimetric heat of adsorption. The results provided by in situ infrared studies show that surface carbonyl oxides appear as intermediates of final functionality, i.e., carbonyl structures. Examining the thermal stability of surface structures shows that all surface species decompose at temperatures below 500 °C, leaving a pristine carbon surface.

2.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762700

RESUMO

Liquid hydrogen carriers will soon play a significant role in transporting energy. The key factors that are considered when assessing the applicability of ammonia cracking in large-scale projects are as follows: high energy density, easy storage and distribution, the simplicity of the overall process, and a low or zero-carbon footprint. Thermal systems used for recovering H2 from ammonia require a reaction unit and catalyst that operates at a high temperature (550-800 °C) for the complete conversion of ammonia, which has a negative effect on the economics of the process. A non-thermal plasma (NTP) solution is the answer to this problem. Ammonia becomes a reliable hydrogen carrier and, in combination with NTP, offers the high conversion of the dehydrogenation process at a relatively low temperature so that zero-carbon pure hydrogen can be transported over long distances. This paper provides a critical overview of ammonia decomposition systems that focus on non-thermal methods, especially under plasma conditions. The review shows that the process has various positive aspects and is an innovative process that has only been reported to a limited extent.


Assuntos
Amônia , Gases em Plasma , Transporte Biológico , Carbono , Temperatura Baixa , Hidrogênio
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628848

RESUMO

Non-thermal plasma (NTP) application in medicine is a dynamically developing interdisciplinary field. Despite the fact that basics of the plasma phenomenon have been known since the 19th century, growing scientific attention has been paid in recent years to the use of plasma in medicine. Three most important plasma-based effects are pivotal for medical applications: (i) inactivation of a broad spectrum of microorganisms, (ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and (iii) inactivation of cells by initialization of cell death with higher plasma intensity. In this review, we explain the underlying chemical processes and reactive species involvement during NTP in human (or animal) tissues, as well as in bacteria inactivation, which leads to sterilization and indirectly supports wound healing. In addition, plasma-mediated modifications of medical surfaces, such as surgical instruments or implants, are described. This review focuses on the existing knowledge on NTP-based in vitro and in vivo studies and highlights potential opportunities for the development of novel therapeutic methods. A full understanding of the NTP mechanisms of action is urgently needed for the further development of modern plasma-based medicine.


Assuntos
Medicina , Gases em Plasma , Animais , Humanos , Morte Celular , Proliferação de Células , Estudos Interdisciplinares , Plasma , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico
4.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077038

RESUMO

Due to easy storage and transportation, liquid hydrogen carriers will play a significant role in diversifying the energy supply pathways by transporting hydrogen on a large scale. Thus, in this study, amorphous carbonaceous materials have been employed for hydrogen production via ammonia decomposition under non-thermal plasma (NTP) conditions. The adsorption and splitting of ammonia over carbons differing in the chemical structure of surface functional groups have been investigated by in situ spectral studies directly under NTP conditions. As a result of NH3 physical and chemical sorption, surface species in the form of ammonium salts, amide and imide structures decompose immediately after switching on the plasma environment, and new functionalities are formed. Carbon catalysts are very active for NH3 splitting. The determined selectivity to H2 is close to 100% on N-doped carbon material. The data obtained indicate that the tested materials possess excellent catalytic ability for economical, COx-free hydrogen production from NH3 at a low temperature.


Assuntos
Amônia , Gases em Plasma , Amônia/química , Carbono/química , Catálise , Hidrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...