Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(54): 116325-116335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910360

RESUMO

Despite the various existing studies with wastes from wastewater treatment plants for the production of bricks, there is still a lack of further studies on the technological characterization and application only of hazardous industrial wastes from the treatment of wastewater from the metal-processing automotive industry in the stabilization/solidification with ceramic materials. Therefore, the objective of this work was to evaluate the use of waste from the treatment of wastewater from the metal processing automotive industry for the production of red ceramics by evaluating the mechanical behavior and the potential for encapsulation of contaminants. The waste was originally classified as Class I-Hazardous due to the presence of Se. A clay with a clayey-silty character was used to produce ceramic test specimens by pressing and calcining at 950 °C. In the production of these test specimens, the clay was replaced with 0%, 5%, and 10% waste, and the mechanical properties of linear shrinkage, apparent porosity, water absorption, and three-point flexural strength of the test specimens, as well as the mineralogical, chemical, and microstructural composition such as the leaching of contaminants and potential encapsulation of all test specimens were evaluated. The results showed that after incorporation into the red ceramic, the wastes led to a reduction in flexural strength associated with greater water absorption and porosity, the higher the incorporated percentage. Changes in mineralogy and chemical composition were observed but did not affect microstructure and mechanical properties. The samples did not show metal leaching above national and international standards for toxicity and limits for groundwater and human consumption. It can be concluded that the use of up to 5% of the waste as a replacement for clay meets the requirements for good mechanical performance and encapsulation of the metals originally present in the waste.


Assuntos
Esgotos , Águas Residuárias , Humanos , Argila , Cerâmica/química , Água , Resíduos Industriais/análise
2.
Environ Sci Pollut Res Int ; 30(14): 42176-42191, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645596

RESUMO

Rice husk ash (RHA) is an excellent pozzolana and associated with hydrated lime (HL), it becomes an alternative binder to Portland cement in soil stabilization. In the context of waste valorization, waste foundry sand (WFS) and carbide lime (CL) have been investigated in civil construction and environmental geotechnical applications. However, stabilizing WFS with alternative binders to Portland cement represents a large field of research to be explored. This study evaluated the stabilization of WFS with a binder based on RHA and CL, compared to the use of RHA-HL. An experimental design was carried out to evaluate the influence of different dry-specific weights (12.00, 12.75, and 13.50 kN/m3), RHA contents (10%, 20%, and 30%), and curing times (28, 60, and 90 days) under unconfined compressive strength (UCS). UCS results were submitted to statistical analysis and correlated to the porosity/binder content index (η/Biv). Healing capacity, mineralogy, microstructure, and leaching of metals from mixtures of interest were evaluated. The results showed that higher specific weights and higher percentages of RHA promoted better strength. The η/Biv0.28 index proved to be an adequate parameter to assess the UCS of WFS-RHA mixtures with different limes (CL and HL), lower porosity, and higher binder content leading to higher strengths. The mixture's mineralogy and microscopy showed the formation of cementing gels, corroborating the strength gains. WFS stabilized with both binders (RHA-CL and RHA-HL) presented satisfactory environmental performance, allowing the immobilization of metals in the waste compositions.


Assuntos
Oryza , Metais , Oryza/química , Óxidos , Areia
3.
Sci Rep ; 12(1): 7542, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534653

RESUMO

This study evaluates the use of rice husk ash (RHA)-eggshell lime (ESL) and RHA-commercial lime (CL) as alternative binders for clayey soil stabilization, as well as the performance of soil-binder mixtures under acidic attack. A central composite design was carried out to analyze the reactivity by batch tests with a sulfuric acid solution. Physical and mechanical behavior was evaluated by compaction test and unconfined compressive strength (UCS). Reactivity tests demonstrated better neutralization of contaminant acidity for mixtures with ESL. The highest compressive strength, reactivity and partial encapsulation of toxic elements are associated with application of 30% RHA and 6% ESL in the soil. A C-S-H gel is observed in poorly crystalline phases through the XRD pattern. The application of RHA-ESL in soils exposed to acidic attack has environmental feasibility. Analysis of RHA grinding processes combined with the mixture strength over time, and its application tests in impermeable barriers, in landfills, are recommended.


Assuntos
Oryza , Animais , Compostos de Cálcio , Casca de Ovo , Oryza/química , Óxidos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...