Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2312573121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557185

RESUMO

Predicting the temporal and spatial patterns of South Asian monsoon rainfall within a season is of critical importance due to its impact on agriculture, water availability, and flooding. The monsoon intraseasonal oscillation (MISO) is a robust northward-propagating mode that determines the active and break phases of the monsoon and much of the regional distribution of rainfall. However, dynamical atmospheric forecast models predict this mode poorly. Data-driven methods for MISO prediction have shown more skill, but only predict the portion of the rainfall corresponding to MISO rather than the full rainfall signal. Here, we combine state-of-the-art ensemble precipitation forecasts from a high-resolution atmospheric model with data-driven forecasts of MISO. The ensemble members of the detailed atmospheric model are projected onto a lower-dimensional subspace corresponding to the MISO dynamics and are then weighted according to their distance from the data-driven MISO forecast in this subspace. We thereby achieve improvements in rainfall forecasts over India, as well as the broader monsoon region, at 10- to 30-d lead times, an interval that is generally considered to be a predictability gap. The temporal correlation of rainfall forecasts is improved by up to 0.28 in this time range. Our results demonstrate the potential of leveraging the predictability of intraseasonal oscillations to improve extended-range forecasts; more generally, they point toward a future of combining dynamical and data-driven forecasts for Earth system prediction.

2.
Natl Sci Rev ; 10(7): nwad054, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37266552

RESUMO

With the growing recognition of coupled human and natural systems (CHANS), modeling CHANS with two-way feedbacks has become a frontier research area and a critical tool to achieve sustainability. The challenges in CHANS modeling and opportunities to advance its science and application to promote the sustainability of CHANS are discussed in this paper.

3.
Ecology ; 101(9): e03107, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32452021

RESUMO

Climate warming is facilitating the expansion of many cold-sensitive woody species in woodland-grassland ecotones worldwide. Recent research has demonstrated that this range expansion can be further enhanced by positive vegetation-microclimate feedbacks whereby woody canopies induce local nocturnal warming, which reduces freeze-induced damage and favors the establishment of woody plants. However, this local positive feedback can be counteracted by biotic drivers such as browsing and the associated consumption of shrub biomass. The joint effects of large-scale climate warming and local-scale microclimate feedbacks on woody vegetation dynamics in these ecotones remain poorly understood. Here, we used a combination of experimental and modeling approaches to investigate the effects of woody cover on microclimate and the consequent implications on ecological stability in North American coastal ecosystems. We found greater browsing pressure and significant warming (~2°C) beneath shrub canopies compared to adjacent grasslands, which reduces shrub seedlings' exposure to cold damage. Cold sensitivity is evidenced by the significant decline in xylem hydraulic conductivity in shrub seedlings when temperatures dropped below -2°C. Despite the negative browsing-vegetation feedback, a small increase in minimum temperature can induce critical transitions from grass to woody plant dominance. Our framework also predicts the threshold temperature of -7°C for mangrove-salt marsh ecotones on the Atlantic coast of Florida. Above this reference temperature a critical transition may occur from salt marsh to mangrove vegetation, in agreement with empirical studies. Thus, the interaction between ongoing global warming trends and microclimate feedbacks may significantly alter woody vegetation dynamics and ecological stability in coastal ecosystems where woody plant expansion is primarily constrained by extreme low temperature events.


Assuntos
Ecossistema , Microclima , Retroalimentação , Florida , Estados Unidos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...