Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976141

RESUMO

Leafy plants are commonly consumed as vegetables in India due to their high nutrient and vitamin content. This study, conducted in Ambagarh Chowki (India), investigated the accumulation potential of 52 elements (including Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn) in seven leafy vegetable species, namely Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L. Technique: Inductively coupled plasma mass spectrometry (ICP-MS) was employed for analysis. The maximum concentrations of elements such as Al, Ba, Be, Bi, Cd, Co, Cr, Fe, Ga, Ge, Li, Mn, Ni, Pb, Sb, Th, Tl, U, V, W, and REEs were observed in S. oleracea leaves, indicating their highest accumulation potential. In contrast, the maximum concentrations of As were found in H. sabdariffa leaves; Ca and Si in M. oleifera leaves; Mg, Sr, and Mo in A. tricolor leaves; and P, K, Cu, and Zn in C. myxa leaves, respectively. Twenty-one elements (Cr, Cd, Pb, Ni, Co, V, Cu, Zn, Fe, Mn, Th, Sb, Ba, Be, Li, Sr, Tl, U, Se, Sn, and REEs) exceeded permissible limits set by the WHO. The elevated hazard index values indicated significant non-carcinogenic effects. The sources of these elements could be attributed to a combination of geological factors and agricultural practices. This study highlights the need for further investigation into the potential health implications of consuming these vegetables in the aforementioned region.

2.
Saudi J Biol Sci ; 25(8): 1826-1833, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30591807

RESUMO

The alterations in somatic genomes that controls the mechanism of cell division as a main cause of cancer, and then the drug that specifically toxic to the cancer cells further complicates the process of the development of the widely effective potential anticancer drug. The side effects of the drug as well as the radiotherapy used for the treatment of cancer is severe; therefore, the search of the natural products from the sources of wild plants having anticancer potential is become immense importance today. The ethno-medicinal survey undertaken in Al-Fayfa and Wadi-E-Damad region of southern Saudi Arabia revealed that the Caralluma retrospiciens (Ehrenb.) N.E.Br. (family Apocynaceae) is being used for the treatment of cancer by the native inhabitants. The biological evaluation of anticancer potential of bioassay-guided fractionations of methanolic extract of whole plant of C. retrospiciens against human breast adenocarcinoma cell line (MCF-7) followed by characterization using spectroscopic methods confirmed the presence of methyl ß-lilacinobioside, a novel active constituent reported for the first time from C. retrospiciens, is capable of inhibition of cell proliferation and induction of apoptosis in MCF-7 cells by regulating ROS mediated autophagy, and thus validated the folkloric claim. Based on a small-scale computational target screening, Topoisomerase II was identified as the potential binding target of methyl ß-lilacinobioside.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...