Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Iran J Psychiatry ; 18(2): 127-133, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37383967

RESUMO

Objective: Schizophrenia is a complex neurodevelopmental illness that is associated with different deficits in the cerebral cortex and neural networks, resulting in irregularity of brain waves. Various neuropathological hypotheses have been proposed for this irregularity that we intend to examine in this computational study. Method : We used a mathematical model of a neuronal population based on cellular automata to examine two hypotheses about the neuropathology of schizophrenia: first, reducing neuronal stimulation thresholds to increase neuronal excitability; and second, increasing the percentage of excitatory neurons and decreasing the percentage of inhibitory neurons to increase the excitation to inhibition ratio in the neuronal population. Then, we compare the complexity of the output signals produced by the model in both cases with real healthy resting-state electroencephalogram (EEG) signals using the Lempel-Ziv complexity measure and see if these changes alter (increase or decrease) the complexity of the neuronal population dynamics. Results: By lowering the neuronal stimulation threshold (i.e., the first hypothesis), no significant change in the pattern and amplitude of the network complexity was observed, and the model complexity was very similar to the complexity of real EEG signals (P > 0.05). However, increasing the excitation to inhibition ratio (i.e., the second hypothesis) led to significant changes in the complexity pattern of the designed network (P < 0.05). More interestingly, in this case, the complexity of the output signals of the model increased significantly compared to real healthy EEGs (P = 0.002) and the model output of the unchanged condition (P = 0.028) and the first hypothesis (P = 0.001). Conclusion: Our computational model suggests that imbalances in the excitation to inhibition ratio in the neural network are probably the source of abnormal neuronal firing patterns and thus the cause of increased complexity of brain electrical activity in schizophrenia.

2.
J Biomed Phys Eng ; 13(2): 125-134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37082543

RESUMO

Background: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive neuroimaging tool, used in brain function research and is also a low-frequency signal, showing brain activation by means of Oxygen consumption. Objective: One of the reliable methods in brain functional connectivity analysis is the correlation method. In correlation analysis, the relationship between two time-series has been investigated. In fMRI analysis, the Pearson correlation is used while there are other methods. This study aims to investigate the different correlation methods in functional connectivity analysis. Material and Methods: In this analytical research, based on fMRI signals of Alzheimer's Disease (AD) and healthy individuals from the ADNI database, brain functional networks were generated using correlation techniques, including Pearson, Kendall, and Spearman. Then, the global and nodal measures were calculated in the whole brain and in the most important resting-state network called Default Mode Network (DMN). The statistical analysis was performed using non-parametric permutation test. Results: Results show that although in nodal analysis, the performance of correlation methods was almost similar, in global features, the Spearman and Kendall were better in distinguishing AD subjects. Note that, nodal analysis reveals that the functional connectivity of the posterior areas in the brain was more damaged because of AD in comparison to frontal areas. Moreover, the functional connectivity of the dominant hemisphere was disrupted more. Conclusion: Although the Pearson method has limitations in capturing non-linear relationships, it is the most prevalent method. To have a comprehensive analysis, investigating non-linear methods such as distance correlation is recommended.

3.
Brain Inform ; 9(1): 21, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112246

RESUMO

Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB-MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.

4.
Comput Biol Med ; 148: 105791, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863245

RESUMO

BACKGROUND: Analysis of effective connectivity among brain regions is an important key to decipher the mechanisms underlying neural disorders such as Attention Deficit Hyperactivity Disorder (ADHD). We previously introduced a new method, called nCREANN (nonlinear Causal Relationship Estimation by Artificial Neural Network), for estimating linear and nonlinear components of effective connectivity, and provided novel findings about effective connectivity of EEG signals of children with autism. Using the nCREANN method in the present study, we assessed effective connectivity patterns of ADHD children based on their EEG signals recorded during a visual attention task, and compared them with the aged-matched Typically Developing (TD) subjects. METHOD: In addition to the nCREANN method for estimating linear and nonlinear aspects of effective connectivity, the direct Directed Transfer Function (dDTF) was utilized to extract the spectral information of connectivity patterns. RESULTS: The dDTF results did not suggest a specific frequency band for distinguishing between the two groups, and different patterns of effective connectivity were observed in all bands. Both nCREANN and dDTF methods showed decreased connectivity between temporal/frontal and temporal/occipital regions, and increased connection between frontal/parietal regions in ADHDs than TDs. Furthermore, the nCREANN results showed more left-lateralized connections in ADHDs compared to the symmetric bilateral inter-hemispheric interactions in TDs. In addition, by fusion of linear and nonlinear connectivity measures of nCREANN method, we achieved an accuracy of 99% in classification of the two groups. CONCLUSION: These findings emphasize the capability of nCREANN method to investigate the brain functioning of neural disorders and its strength in preciously distinguish between healthy and disordered subjects.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Idoso , Encéfalo , Mapeamento Encefálico , Criança , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
5.
Front Hum Neurosci ; 16: 936393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845249

RESUMO

Emotion recognition systems have been of interest to researchers for a long time. Improvement of brain-computer interface systems currently makes EEG-based emotion recognition more attractive. These systems try to develop strategies that are capable of recognizing emotions automatically. There are many approaches due to different features extractions methods for analyzing the EEG signals. Still, Since the brain is supposed to be a nonlinear dynamic system, it seems a nonlinear dynamic analysis tool may yield more convenient results. A novel approach in Symbolic Time Series Analysis (STSA) for signal phase space partitioning and symbol sequence generating is introduced in this study. Symbolic sequences have been produced by means of spherical partitioning of phase space; then, they have been compared and classified based on the maximum value of a similarity index. Obtaining the automatic independent emotion recognition EEG-based system has always been discussed because of the subject-dependent content of emotion. Here we introduce a subject-independent protocol to solve the generalization problem. To prove our method's effectiveness, we used the DEAP dataset, and we reached an accuracy of 98.44% for classifying happiness from sadness (two- emotion groups). It was 93.75% for three (happiness, sadness, and joy), 89.06% for four (happiness, sadness, joy, and terrible), and 85% for five emotional groups (happiness, sadness, joy, terrible and mellow). According to these results, it is evident that our subject-independent method is more accurate rather than many other methods in different studies. In addition, a subject-independent method has been proposed in this study, which is not considered in most of the studies in this field.

6.
Int J Neurosci ; 132(10): 1005-1013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33297814

RESUMO

Purpose: Alzheimer's disease (AD) starts years before its signs and symptoms including the dementia become apparent. Diagnosis of the AD in the early stages is important to reduce the speed of brain decline. Aim of the study: Identifying the alterations in the functional connectivity of the brain during the disease stages is among the main important issues in this regard. Therefore, in this study, the changes in the functional connectivity during the AD stages were analyzed.Materials and methods: By employing the functional magnetic resonance imaging (fMRI) data and graph theory, weighted undirected graphs of the whole-brain and default mode network (DMN) network were investigated individually in the early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), AD, and control subjects. Results: In the whole-brain analysis, during one year of disease progression, no significant changes were observed in none of the study groups. However, the intergroup comparison showed that in different stages (from healthy to AD) the efficiencies, clustering coefficient, transitivity, and modularity of the brain network have significantly changed. In the DMN network analysis, the EMCI subjects demonstrated significant alterations but no significant changes were observed in other study groups. In the nodal analysis of the DMN, the participation, clustering, and degree were among the measures significantly changed with the AD progression. Conclusions: Functional connectivity alterations are more in the first stage of AD. Since AD progresses slowly whole brain alterations are not significant in one year but DMN exhibits significant changes. Cingulum anterior and posterior areas were the first affected regions of interest (ROI) in the DMN network afterwards, the frontal superior medial ROI was declined in the functional connectivity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Encéfalo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia
7.
Biomed Tech (Berl) ; 67(1): 19-32, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34953180

RESUMO

The brain is considered to be the most complicated organ in human body. Inferring and quantification of effective (causal) connectivity among regions of the brain is an important step in characterization of its complicated functions. The proposed method is comprised of modeling multivariate time series with Adaptive Neurofuzzy Inference System (ANFIS) and carrying out a sensitivity analysis using Fuzzy network parameters as a new approach to introduce a connectivity measure for detecting causal interactions between interactive input time series. The results of simulations indicate that this method is successful in detecting causal connectivity. After validating the performance of the proposed method on synthetic linear and nonlinear interconnected time series, it is applied to epileptic intracranial Electroencephalography (EEG) signals. The result of applying the proposed method on Freiburg epileptic intracranial EEG data recorded during seizure shows that the proposed method is capable of discriminating between the seizure and non-seizure states of the brain.


Assuntos
Eletroencefalografia , Epilepsia , Algoritmos , Encéfalo , Epilepsia/diagnóstico , Humanos , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador
8.
Med Biol Eng Comput ; 59(3): 575-588, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559863

RESUMO

Human memory retrieval is one of the brain's most important, and least understood cognitive mechanisms. Traditionally, research on this aspect of memory has focused on the contributions of particular brain regions to recognition responses, but the interaction between regions may be of even greater importance to a full understanding. In this study, we examined patterns of network connectivity during retrieval in a recognition memory task. We estimated connectivity between brain regions from electroencephalographic signals recorded from twenty healthy subjects. A multivariate autoregressive model (MVAR) was used to determine the Granger causality to estimate the effective connectivity in the time-frequency domain. We used GPDC and dDTF methods because they have almost resolved the previous volume conduction and bivariate problems faced by previous estimation methods. Results show enhanced global connectivity in the theta and gamma bands on target trials relative to lure trials. Connectivity within and between the brain's hemispheres may be related to correct rejection. The left frontal signature appears to have a crucial role in recollection. Theta- and gamma-specific connectivity patterns between temporal, parietal, and frontal cortex may disclose the retrieval mechanism. Old/new comparison resulted in different patterns of network connection. These results and other evidence emphasize the role of frequency-specific causal network interactions in the memory retrieval process. Graphical abstract a Schematic of processing workflow which is consists of pre-processing, sliding-window AMVAR modeling, connectivity estimation, and validation and group network analysis. b Co-registration between Geodesic Sensor Net. and 10-20 system, the arrows mention eight regions of interest (Left, Anterior, Inferior (LAI) and Right, Anterior, Inferior (RAI) and Left, Anterior, Superior (LAS) and Right, Anterior, Superior (RAS) and Left, Posterior, Inferior (LPI) and Right, Posterior, Inferior (RPI) and Left, Posterior, Superior (LPS) and Right, Posterior, Superior (RPS)).


Assuntos
Mapeamento Encefálico , Eletroencefalografia , Encéfalo , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética , Vias Neurais
9.
Comput Methods Programs Biomed ; 201: 105954, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33567381

RESUMO

Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to eliminate weak correlations, thresholding is a common method. In this routine, by adjusting a threshold the values below the threshold turn to zero and the rest remains. In this paper, in addition to thresholding, two other methods including spectral sparsification based on Effective Resistance (ER) and autoencoders are investigated for sparsing the correlation matrices. Autoencoders are based on deep learning neural networks and ER considers the network as a resistive circuit. The fMRI data of the study correspond to Alzheimer's patients and control subjects. Graph global measures are calculated and a non-parametric permutation test is reported. Results show that the autoencoder and spectral sparsification achieved more distinctive brain graphs between healthy and AD subjects. Also, more graph global features were significantly different from these two methods due to better elimination of weak correlations and preserve more informative ones. Regardless of the sparsification method features including average strength, clustering, local efficiency, modularity, and transitivity are significantly different (P-value=0.05). On the other hand, the measures radius, diameter, and eccentricity showed no significant differences in none of the methods. In addition, according to three different methods, the brain regions show fragile and solid FCs are determined.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Rede Nervosa/diagnóstico por imagem , Descanso
10.
Iran J Psychiatry ; 16(4): 374-382, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35082849

RESUMO

Objective: This study aimed to investigate differences in brain networks between healthy children and children with attention deficit hyperactivity disorder (ADHD) during an attention test. Method : To fulfill this, we constructed weighted directed graphs based on Electroencephalography (EEG) signals of 61 children with ADHD and 60 healthy children with the same age. Nodes of graphs were 19 EEG electrodes, and the edges were phase transfer entropy (PTE) between each pair of electrodes. PTE is a measure for directed connectivity that determines the effective relationship between signals in linear and nonlinear coupling. Connectivity graphs of each sample were constructed using PTE in the five frequency bands as follows: delta, theta, alpha, beta, and gamma. To investigate the differences in connectivity strength of each node after the sparsification process with two values (0.5 and 0.25), the permutation statistical test was used with the statistical significance level of p<0.01. Results: The results indicate stronger inter-regional connectivity in the prefrontal brain regions of the control group compared to the ADHD group. However, the strength of inter-regional connectivity in the central regions of the ADHD group was higher. A comparison of the prefrontal regions between the two groups revealed that the areas of the Fp1 electrode (left prefrontal) in healthy individuals play stronger transmission roles. Conclusion: Our research can provide new insights into the strength and direction of connectivity in ADHD and healthy individuals during an attention task.

11.
Cogn Neurodyn ; 14(4): 457-471, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32655710

RESUMO

Investigating human brain activity during expressing emotional states provides deep insight into complex cognitive functions and neurological correlations inside the brain. To be able to resemble the brain function in the best manner, a complex and natural stimulus should be applied as well, the method used for data analysis should have fewer assumptions, simplifications, and parameter adjustment. In this study, we examined a functional magnetic resonance imaging dataset obtained during an emotional audio-movie stimulus associated with human life. We used Jackknife Correlation (JC) method to derive a representation of time-varying functional connectivity. We applied different binary measures and thoroughly investigated two weighted measures to study different properties of binary and weighted temporal networks. Using this approach, we indicated different aspects of human brain function during expressing different emotions. The findings of global and nodal measures could demonstrate a significant difference between emotions and significant regions in each emotion, respectively. Also, the temporal centrality properties of nodes were different in emotional states. Ultimately, we showed that the resulting measures of temporal snapshots created by JC method can distinguish between different emotions.

12.
Int J Clin Exp Hypn ; 68(3): 306-326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32510271

RESUMO

This study examined hypnotizability-related modulation of the cortical network following expected and nonexpected nociceptive stimulation. The electroencephalogram (EEG) was recorded in 9 high (highs) and 8 low (lows) hypnotizable participants receiving nociceptive stimulation with (W1) and without (noW) a visual warning preceding the stimulation by 1 second. W1 and noW were compared to baseline conditions to assess the presence of any later effect and between each other to assess the effects of expectation. The studied EEG variables measured local and global features of the cortical connectivity. With respect to lows, highs exhibited scarce differences between experimental conditions. The hypnotizability-related differences in the later processing of nociceptive information could be relevant to the development of pain-related individual traits. Present findings suggest a lower impact of nociceptive stimulation in highs than in lows.


Assuntos
Hipnose/métodos , Rede Nervosa , Nociceptividade , Dor/psicologia , Adulto , Encéfalo/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Humanos , Nociceptividade/fisiologia , Dor/prevenção & controle , Adulto Jovem
13.
Biomed Phys Eng Express ; 6(5): 055022, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33444253

RESUMO

Alzheimer's Disease (AD) begins several years before the symptoms develop. It starts with Mild Cognitive Impairment (MCI) which can be separated into Early MCI and Late MCI (EMCI and LMCI). Functional connectivity analysis and classification are done among the different stages of illness with Functional Magnetic Resonance Imaging (fMRI). In this study, in addition to the four stages including healthy, EMCI, LMCI, and AD, the patients have been tracked for a year. Indeed, the classification has been done among 7 groups to analyze the functional connectivity changes in one year in different stages. After generating the functional connectivity graphs for eliminating the weak links, three different sparsification methods were used. In addition to simple thresholding, spectral sparsification based on effective resistance and sparse autoencoder were performed in order to analyze the effect of sparsification routine on classification results. Also, instead of extracting common features, the correlation matrices were reshaped to a correlation vector and used as a feature vector to enter the classifier. Since the correlation matrix is symmetric, in another analysis half of the feature vector was used, moreover, the Genetic Algorithm (GA) also utilized for feature vector dimension reduction. The non-linear SVM classifier with a polynomial kernel applied. The results showed that the autoencoder sparsification method had the greatest discrimination power with the accuracy of 98.35% for classification when the feature vector was the full correlation matrix.


Assuntos
Algoritmos , Doença de Alzheimer/classificação , Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino
14.
Biomed Tech (Berl) ; 65(1): 23-32, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31541600

RESUMO

Brain connectivity estimation is a useful method to study brain functions and diagnose neuroscience disorders. Effective connectivity is a subdivision of brain connectivity which discusses the causal relationship between different parts of the brain. In this study, a dual Kalman-based method is used for effective connectivity estimation. Because of connectivity changes in autism, the method is applied to autistic signals for effective connectivity estimation. For method validation, the dual Kalman based method is compared with other connectivity estimation methods by estimation error and the dual Kalman-based method gives acceptable results with less estimation errors. Then, connectivities between active brain regions of autistic and normal children in the resting state are estimated and compared. In this simulation, the brain is divided into eight regions and the connectivity between regions and within them is calculated. It can be concluded from the results that in the resting state condition the effective connectivity of active regions is decreased between regions and is increased within each region in autistic children. In another result, by averaging the connectivity between the extracted active sources of each region, the connectivity between the left and right of the central part is more than that in other regions and the connectivity in the occipital part is less than that in others.


Assuntos
Transtorno Autístico/diagnóstico , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Algoritmos , Criança , Humanos
15.
Med Hypotheses ; 136: 109517, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31835208

RESUMO

Deception is mentioned as an expression or action which hides the truth and deception detection as a concept to uncover the truth. In this research, a connectivity analysis of Electro Encephalography study is presented regarding cognitive processes of an instructed liar/truth-teller about identity during an interview. In this survey, connectivity analysis is applied because it can provide unique information about brain activity patterns of lying and interaction among brain regions. The novelty of this paper lies in applying an open-ended questions interview protocol during EEG recording. We recruited 40 healthy participants to record EEG signal during the interview. For each subject, whole-brain functional and effective connectivity networks such as coherence, generalized partial direct coherence and directed directed transfer function, are constructed for the lie-telling and truth-telling conditions. The classification results demonstrate that lying could be differentiated from truth-telling with an accuracy of 86.25% with the leave-one-person-out method. Results show functional and effective connectivity patterns of lying for the average of all frequency bands are different in regions from that of truth-telling. The current study may shed new light on neural patterns of deception from connectivity analysis view point.


Assuntos
Encéfalo/fisiopatologia , Enganação , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Masculino , Tempo de Reação , Reprodutibilidade dos Testes , Adulto Jovem
16.
Cogn Neurodyn ; 13(5): 461-473, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31565091

RESUMO

Epilepsy is a chronic disorder, which causes strange perceptions, muscle spasms, sometimes seizures, and loss of awareness, associated with abnormal neuronal activity in the brain. The goal of this study is to investigate how effective connectivity (EC) changes effect on unexpected seizures prediction, as this will authorize the patients to play it safe and avoid risk. We approve the hypothesis that EC variables near seizure change significantly so seizure can be predicted in accordance with this variation. We introduce two time-variant coefficients based on standard deviation of EC on Freiburg EEG dataset by using directed transfer function and Granger causality methods and compare index changes over the course of time in five different frequency bands. Comparison of the multivariate and bivariate analysis of factors is implemented in this investigation. The performance based on the suggested methods shows the seizure occurrence period is approximately 50 min that is expected onset stated in, the maximum value of sensitivity approaching ~ 80%, and 0.33 FP/h is the false prediction rate. The findings revealed that greater accuracy and sensitivity are obtained by the designed system in comparison with the results of other works in the same condition. Even though these results still are not sufficient for clinical applications. Based on the conclusions, it can generally be observed that the greater results by DTF method are in the gamma and beta frequency bands.

17.
Comput Biol Med ; 101: 82-89, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30114547

RESUMO

The steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) has received increasing attention in recent years. The present study proposes a new method for recognition based on system identification. The method relies on modeling the electroencephalogram (EEG) signals using the Box-Jenkins model. In this approach, the recorded EEG signal is considered as a combination of an SSVEP signal evoked by periodic visual stimulation and a background EEG signal whose components are modeled by a moving average (MA) process and an auto-regressive moving average (ARMA) process, respectively. Then, the target frequency is determined by comparing the modeled SSVEP signals for all stimulation frequencies. The experimental results of the proposed method for recorded EEG signals from five subjects (each subject with four stimulation frequencies) demonstrated a significant improvement in the accuracy of the SSVEP recognition in contrast to canonical correlation analysis, least absolute shrinkage and selection operator, and multivariate linear regression methods. The proposed method exhibits enhanced accuracy especially for short data length and a small number of channels. This superiority suggests that the proposed method is an appropriate choice for the implementation of real-time SSVEP based BCI systems.


Assuntos
Algoritmos , Mapeamento Encefálico , Interfaces Cérebro-Computador , Eletroencefalografia , Potenciais Evocados Visuais/fisiologia , Modelos Neurológicos , Estimulação Luminosa , Adulto , Feminino , Humanos , Masculino
18.
Am J Mens Health ; 12(1): 117-125, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26993994

RESUMO

Recently, heart rate variability (HRV) analysis has been used as an indicator of epileptic seizures. As women have a lower sudden, unexpected death in epilepsy risk and greater longevity than men, the authors postulated that there are significant gender-related differences in heart rate dynamics of epileptic patients. The authors analyzed HRV during 5-minute segments of continuous electrocardiogram recording of age-matched populations. The middle-aged epileptic patients included males ( n = 12) and females ( n = 12), ranging from 41 to 65 years of age. Relatively high- (0.15 Hz-0.40 Hz) and low-frequency (0.01 Hz-0.15 Hz) components of HRV were computed using spectral analysis. Poincaré parameters of each heart rate time series were considered as nonlinear features. The mean heart rate markedly differed between gender groups including both right- and left-sided seizures. High-frequency heart rate power and the low-frequency/high-frequency ratio increased in the pre-ictal phase of both male and female groups ( p < .01), but men showed more increase especially in right-sided seizures. The standard deviation ratio, SD2/ SD1, of pre-ictal phase was greater in males than females ( p < .01). High-frequency spectral power and parasympathetic activity were higher in the female group with both right- and left-sided seizures. Men showed a sudden increase in sympathetic activity in the pre-ictal phase, which might increase the risk of cardiovascular disease in comparison to women. These complementary findings indicate the need to account for gender, as well as localization in HRV analysis.


Assuntos
Epilepsia/diagnóstico , Epilepsia/epidemiologia , Frequência Cardíaca/fisiologia , Taquicardia/epidemiologia , Adulto , Fatores Etários , Idoso , Estudos de Casos e Controles , Eletrocardiografia/métodos , Epilepsia/tratamento farmacológico , Feminino , Identidade de Gênero , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Taquicardia/diagnóstico por imagem , Taquicardia/fisiopatologia
19.
J Med Eng Technol ; 40(3): 87-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028609

RESUMO

Intensive care unit (ICU) patients are at risk of in-ICU morbidities and mortality, making specific systems for identifying at-risk patients a necessity for improving clinical care. This study presents a new method for predicting in-hospital mortality using heart rate variability (HRV) collected from the times of a patient's ICU stay. In this paper, a HRV time series processing based method is proposed for mortality prediction of ICU cardiovascular patients. HRV signals were obtained measuring R-R time intervals. A novel method, named return map, is then developed that reveals useful information from the HRV time series. This study also proposed several features that can be extracted from the return map, including the angle between two vectors, the area of triangles formed by successive points, shortest distance to 45° line and their various combinations. Finally, a thresholding technique is proposed to extract the risk period and to predict mortality. The data used to evaluate the proposed algorithm obtained from 80 cardiovascular ICU patients, from the first 48 h of the first ICU stay of 40 males and 40 females. This study showed that the angle feature has on average a sensitivity of 87.5% (with 12 false alarms), the area feature has on average a sensitivity of 89.58% (with 10 false alarms), the shortest distance feature has on average a sensitivity of 85.42% (with 14 false alarms) and, finally, the combined feature has on average a sensitivity of 92.71% (with seven false alarms). The results showed that the last half an hour before the patient's death is very informative for diagnosing the patient's condition and to save his/her life. These results confirm that it is possible to predict mortality based on the features introduced in this paper, relying on the variations of the HRV dynamic characteristics.


Assuntos
Doenças Cardiovasculares/mortalidade , Cuidados Críticos/métodos , Frequência Cardíaca/fisiologia , Processamento de Sinais Assistido por Computador , Idoso , Doenças Cardiovasculares/terapia , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear
20.
Iran J Public Health ; 44(12): 1693-700, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26811821

RESUMO

BACKGROUND: Driver fatigue is one of the major implications in transportation safety and accounted for up to 40% of road accidents. This study aimed to analyze the EEG alpha power changes in partially sleep-deprived drivers while performing a simulated driving task. METHODS: Twelve healthy male car drivers participated in an overnight study. Continuous EEG and EOG records were taken during driving on a virtual reality simulator on a monotonous road. Simultaneously, video recordings from the driver face and behavior were performed in lateral and front views and rated by two trained observers. Moreover, the subjective self-assessment of fatigue was implemented in every 10-min interval during the driving using Fatigue Visual Analog Scale (F-VAS). Power spectrum density and fast Fourier transform (FFT) were used to determine the absolute and relative alpha powers in the initial and final 10 minutes of driving. RESULTS: The findings showed a significant increase in the absolute alpha power (P = 0.006) as well as F-VAS scores during the final section of driving (P = 0.001). Meanwhile, video ratings were consistent with subjective self-assessment of fatigue. CONCLUSION: The increase in alpha power in the final section of driving indicates the decrease in the level of alertness and attention and the onset of fatigue, which was consistent with F-VAS and video ratings. The study suggested that variations in alpha power could be a good indicator for driver mental fatigue, but for using as a countermeasure device needed further investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...