Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38722823

RESUMO

Physiological responses of soil microorganisms to global warming are important for soil ecosystem function and the terrestrial carbon cycle. Here, we investigate the effects of weeks, years, and decades of soil warming across seasons and time on the microbial protein biosynthesis machineries (i.e. ribosomes), the most abundant cellular macromolecular complexes, using RNA:DNA and RNA:MBC (microbial biomass carbon) ratios as proxies for cellular ribosome contents. We compared warmed soils and non-warmed controls of 15 replicated subarctic grassland and forest soil temperature gradients subject to natural geothermal warming. RNA:DNA ratios tended to be lower in the warmed soils during summer and autumn, independent of warming duration (6 weeks, 8-14 years, and > 50 years), warming intensity (+3°C, +6°C, and +9°C), and ecosystem type. With increasing temperatures, RNA:MBC ratios were also decreasing. Additionally, seasonal RNA:DNA ratios of the consecutively sampled forest showed the same temperature-driven pattern. This suggests that subarctic soil microorganisms are depleted of ribosomes under warm conditions and the lack of consistent relationships with other physicochemical parameters besides temperature further suggests temperature as key driver. Furthermore, in incubation experiments, we measured significantly higher CO2 emission rates per unit of RNA from short- and long-term warmed soils compared to non-warmed controls. In conclusion, ribosome reduction may represent a widespread microbial physiological response to warming that offers a selective advantage at higher temperatures, as energy and matter can be reallocated from ribosome synthesis to other processes including substrate uptake and turnover. This way, ribosome reduction could have a substantial effect on soil carbon dynamics.


Assuntos
Ribossomos , Estações do Ano , Microbiologia do Solo , Solo , Ribossomos/metabolismo , Solo/química , Aquecimento Global , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Florestas , Pradaria , Temperatura , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Carbono/metabolismo
2.
ISME J ; 17(4): 502-513, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36650275

RESUMO

Methanotrophs oxidize most of the methane (CH4) produced in natural and anthropogenic ecosystems. Often living close to soil surfaces, these microorganisms must frequently adjust to temperature change. While many environmental studies have addressed temperature effects on CH4 oxidation and methanotrophic communities, there is little knowledge about the physiological adjustments that underlie these effects. We have studied thermal acclimation in Methylobacter, a widespread, abundant, and environmentally important methanotrophic genus. Comparisons of growth and CH4 oxidation kinetics at different temperatures in three members of the genus demonstrate that temperature has a strong influence on how much CH4 is consumed to support growth at different CH4 concentrations. However, the temperature effect varies considerably between species, suggesting that how a methanotrophic community is composed influences the temperature effect on CH4 uptake. To understand thermal acclimation mechanisms widely we carried out a transcriptomics experiment with Methylobacter tundripaludum SV96T. We observed, at different temperatures, how varying abundances of transcripts for glycogen and protein biosynthesis relate to cellular glycogen and ribosome concentrations. Our data also demonstrated transcriptional adjustment of CH4 oxidation, oxidative phosphorylation, membrane fatty acid saturation, cell wall composition, and exopolysaccharides between temperatures. In addition, we observed differences in M. tundripaludum SV96T cell sizes at different temperatures. We conclude that thermal acclimation in Methylobacter results from transcriptional adjustment of central metabolism, protein biosynthesis, cell walls and storage. Acclimation leads to large shifts in CH4 consumption and growth efficiency, but with major differences between species. Thus, our study demonstrates that physiological adjustments to temperature change can substantially influence environmental CH4 uptake rates and that consideration of methanotroph physiology might be vital for accurate predictions of warming effects on CH4 emissions.


Assuntos
Ecossistema , Microbiologia do Solo , Filogenia , RNA Ribossômico 16S/metabolismo , Oxirredução , Metano/metabolismo , Solo/química
3.
Sci Adv ; 8(12): eabm3230, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333567

RESUMO

How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here, we applied metatranscriptomics to investigate microbial physiological responses to medium-term (8 years) and long-term (>50 years) subarctic grassland soil warming of +6°C. Besides indications for a community-wide up-regulation of centralmetabolic pathways and cell replication, we observed a down-regulation of the bacterial protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations result in cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6°C), further supported our conclusion. Down-regulating the protein biosynthesis machinery liberates energy and matter, allowing soil bacteria to maintain high metabolic activities and cell division rates even after decades of warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...