Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 211(5): 1041-56, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644516

RESUMO

A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum-derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division.


Assuntos
Adenosina Trifosfatases/metabolismo , Dinaminas/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Endossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Microscopia de Fluorescência , Mutação , Transporte Proteico , Transdução de Sinais , Frações Subcelulares
2.
Autophagy ; 10(5): 835-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24657987

RESUMO

Turnover of damaged, dysfunctional, or excess organelles is critical to cellular homeostasis. We screened mutants disturbed in peroxisomal protein import, and found that a deficiency in the exportomer subunits Pex1, Pex6, and Pex15 results in enhanced turnover of peroxisomal membrane structures compared with other mutants. Strikingly, almost all peroxisomal membranes were associated with phagophore assembly sites in pex1Δ atg1Δ cells. Degradation depended on Atg11 and the pexophagy receptor Atg36, which mediates degradation of superfluous peroxisomes. Mutants of PEX1, PEX6, and PEX15 accumulate ubiquitinated receptors at the peroxisomal membrane. This accumulation has been suggested to trigger pexophagy in mammalian cells. We show by genetic analysis that preventing this accumulation does not abolish pexophagy in Saccharomyces cerevisiae. We find Atg36 is modified in pex1Δ cells even when Atg11 binding is prevented, suggesting Atg36 modification is an early event in the degradation of dysfunctional peroxisomal structures in pex1Δ cells via pexophagy.


Assuntos
Adenosina Trifosfatases/genética , Autofagia/genética , Proteínas de Membrana/genética , Peroxissomos/metabolismo , Fosfoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Proteínas Relacionadas à Autofagia , Membranas Intracelulares/metabolismo , Organismos Geneticamente Modificados , Peroxissomos/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Ubiquitinadas/metabolismo
3.
Biol Open ; 2(8): 829-37, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23951409

RESUMO

Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway.

4.
Autophagy ; 8(11): 1680-1, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22874561

RESUMO

Eukaryotic cells adapt their organelle composition and abundance according to environmental conditions. Analysis of the peroxisomal membrane protein Pex3 has revealed that this protein plays a crucial role in peroxisome maintenance as it is required for peroxisome formation, segregation and breakdown. Although its function in peroxisome formation and segregation was known to involve its recruitment to the peroxisomal membrane of factors specific for these processes, the role of Pex3 in peroxisome breakdown was unclear until our recent identification of Atg36 as a novel Saccharomyces cerevisiae Pex3-interacting protein. Atg36 is recruited to peroxisomes by Pex3 and is required specifically for pexophagy. Atg36 is distinct from Atg30, the pexophagy receptor identified in Pichia pastoris. Atg36 interacts with Atg11 in vivo, and to a lesser extent with Atg8. These latter proteins link autophagic cargo receptors to the core autophagy machinery. Like other autophagic cargo receptors, Atg36 is a suicide receptor and is broken down in the vacuole together with its cargo. Unlike other cargo receptors, the interaction between Atg36 and Atg8 does not seem to be direct. Our recent findings suggest that Atg36 is a novel pexophagy receptor that may target peroxisomes for degradation via a noncanonical mechanism.


Assuntos
Autofagia , Peroxissomos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Humanos , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
5.
EMBO J ; 31(13): 2852-68, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22643220

RESUMO

Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Peroxinas , Ligação Proteica , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Curr Opin Cell Biol ; 23(4): 421-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21689915

RESUMO

In recent years, it has become evident that peroxisomes form part of the endomembrane system. Peroxisomes can form from the ER via a maturation process and they can multiply by growth and division, whereby the ER provides membrane for growth and ongoing fission (Figure 1). Until very recently, it was widely accepted that most peroxisomal membrane proteins (PMPs) insert directly into peroxisomes, whereas a small subset of PMPs traffic via the ER. In this minireview, we focus mainly on PMP biogenesis, and highlight recent advances in peroxisomal matrix protein import, fission and segregation in yeast.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos , Transporte Proteico , Leveduras/citologia , Leveduras/metabolismo
7.
J Cell Biol ; 187(4): 463-71, 2009 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-19948495

RESUMO

Saccharomyces cerevisiae Pex3p has been shown to act at the ER during de novo peroxisome formation. However, its steady state is at the peroxisomal membrane, where its role is debated. Here we show that Pex3p has a dual function: one in peroxisome formation and one in peroxisome segregation. We show that the peroxisome retention factor Inp1p interacts physically with Pex3p in vitro and in vivo, and split-GFP analysis shows that the site of interaction is the peroxisomal membrane. Furthermore, we have generated PEX3 alleles that support peroxisome formation but fail to support recruitment of Inp1p to peroxisomes, and as a consequence are affected in peroxisome segregation. We conclude that Pex3p functions as an anchor for Inp1p at the peroxisomal membrane, and that this function is independent of its role at the ER in peroxisome biogenesis.


Assuntos
Proteínas de Membrana/fisiologia , Peroxissomos/genética , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/fisiologia , Peroxinas , Peroxissomos/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Cell Sci ; 122(Pt 14): 2331-6, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19571112

RESUMO

With every cell division, peroxisomes duplicate and are segregated between progeny cells. Here, we discuss the different modes of peroxisome multiplication and the machinery that is involved in each case. Peroxisomes have been considered by many to be peripheral to mainstream cell biology. However, this is changing in response to the recent finding that peroxisomes obtain membrane constituents from the endoplasmic reticulum, making them the latest branch of the endomembrane system to be identified. Furthermore, the observations that peroxisome and mitochondrial biogenesis can occur in a coordinated manner, and that these organelles share factors for their multiplication, demonstrate previously unanticipated aspects of cellular organisation.


Assuntos
Divisão Celular/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Animais , Humanos , Fusão de Membrana , Mitocôndrias/metabolismo , Transporte Proteico
9.
J Cell Sci ; 121(Pt 10): 1633-40, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18445678

RESUMO

Yeast peroxisomes multiply by fission. Fission requires two dynamin-related proteins, Dnm1p and Vps1p. Using an in vivo fission assay, we show that Dnm1p-dependent peroxisome fission requires Fis1p, Caf4p and Mdv1p. Fluorescence microscopy of cells expressing GFP-tagged Caf4p and Mdv1p revealed that their association with peroxisomes relies on Fis1p. Vps1p-dependent peroxisome fission occurs independently of these factors. Vps1p contributes most to fission of peroxisomes when cells are grown on glucose. Overexpression of Dnm1p suppresses the fission defect as long as Fis1p and either Mdv1p or Caf4p are present. Conversely, overexpression of Dnm1p does not restore the vacuolar fusion defect of vps1 cells and Vps1p overexpression does not restore the mitochondrial fission defect of dnm1 cells. These data show that Vps1p and Dnm1p are part of independent fission machineries. Because the contribution of Dnm1p to peroxisome fission appears to be more pronounced in cells that proliferate peroxisomes in response to mitochondrial dysfunction, Dnm1p might be part of the mechanism that coordinates mitochondrial and peroxisomal biogenesis.


Assuntos
Proteínas de Transporte/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Transporte Vesicular
10.
J Cell Biol ; 178(3): 399-410, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17646399

RESUMO

Peroxisomes can arise de novo from the endoplasmic reticulum (ER) via a maturation process. Peroxisomes can also multiply by fission. We have investigated how these modes of multiplication contribute to peroxisome numbers in Saccharomyces cerevisiae and the role of the dynamin-related proteins (Drps) in these processes. We have developed pulse-chase and mating assays to follow the fate of existing peroxisomes, de novo-formed peroxisomes, and ER-derived preperoxisomal structures. We find that in wild-type (WT) cells, peroxisomes multiply by fission and do not form de novo. A marker for the maturation pathway, Pex3-GFP, is delivered from the ER to existing peroxisomes. Strikingly, cells lacking peroxisomes as a result of a segregation defect do form peroxisomes de novo. This process is slower than peroxisome multiplication in WT cells and is Drp independent. In contrast, peroxisome fission is Drp dependent. Our results show that peroxisomes multiply by growth and division under our assay conditions. We conclude that the ER to peroxisome pathway functions to supply existing peroxisomes with essential membrane constituents.


Assuntos
Peroxissomos/metabolismo , Saccharomyces cerevisiae/citologia , Dinaminas/metabolismo , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Peroxinas , Peroxissomos/ultraestrutura , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular
11.
Mol Biol Cell ; 18(9): 3351-65, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17581864

RESUMO

Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2-depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Regulação para Baixo/genética , Produtos do Gene nef/metabolismo , HIV-1/metabolismo , Antígeno HLA-A2/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Antígeno HLA-A2/ultraestrutura , Células HeLa , Humanos , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana
12.
Mol Biol Cell ; 17(12): 5298-308, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035630

RESUMO

The AP-2 adaptor complex plays a key role in cargo recognition and clathrin-coated vesicle formation at the plasma membrane. To investigate the functions of individual binding sites and domains of the AP-2 complex in vivo, we have stably transfected HeLa cells with wild-type and mutant small interfering RNA-resistant alpha and mu2 subunits and then used siRNA knockdowns to deplete the endogenous proteins. Mutating the PtdIns(4,5)P2 binding site of alpha, the phosphorylation site of mu2, or the YXXPhi binding site of mu2 impairs AP-2 function, as assayed by transferrin uptake. In contrast, removing the C-terminal appendage domain of alpha, or mutating the PtdIns(4,5)P2 binding site of mu2, has no apparent effect. However, adding a C-terminal GFP tag to alpha renders it completely nonfunctional. These findings demonstrate that there is some functional redundancy in the binding sites of the various AP-2 subunits, because no single mutation totally abolishes function. They also help to explain why GFP-tagged AP-2 never appears to leave the plasma membrane in some live cell imaging studies. Finally, they establish a new model system that can be used both for additional structure-function analyses, and as a way of testing tagged constructs for function in vivo.


Assuntos
Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Animais , Endocitose , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Transferrina/metabolismo
13.
Mol Cell ; 18(5): 519-31, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15916959

RESUMO

The alpha,beta2,mu2,sigma2 heterotetrameric AP2 complex is recruited exclusively to the phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2))-rich plasma membrane where, amongst other roles, it selects motif-containing cargo proteins for incorporation into clathrin-coated vesicles. Unphosphorylated and mu2Thr156-monophosphorylated AP2 mutated in their alphaPtdIns4,5P(2), mu2PtdIns4,5P(2), and mu2Yxxvarphi binding sites were produced, and their interactions with membranes of different phospholipid and cargo composition were measured by surface plasmon resonance. We demonstrate that recognition of Yxxvarphi and acidic dileucine motifs is dependent on corecognition with PtdIns4,5P(2), explaining the selective recruitment of AP2 to the plasma membrane. The interaction of AP2 with PtdIns4,5P(2)/Yxxvarphi-containing membranes is two step: initial recruitment via the alphaPtdIns4,5P(2) site and then stabilization through the binding of mu2Yxxvarphi and mu2PtdIns4,5P(2) sites to their ligands. The second step is facilitated by a conformational change favored by mu2Thr156 phosphorylation. The binding of AP2 to acidic-dileucine motifs occurs at a different site from Yxxvarphi binding and is not enhanced by mu2Thr156 phosphorylation.


Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos , Clatrina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinais Direcionadores de Proteínas , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Sítios de Ligação , Técnicas Biossensoriais , Membrana Celular/química , Membrana Celular/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Fosfatidilinositóis/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Cell Biol ; 162(5): 909-18, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12952941

RESUMO

We have used RNA interference to knock down the AP-2 mu2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2-depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2-depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2-depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Subunidades Proteicas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Animais , Clatrina/genética , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Humanos , Subunidades Proteicas/genética , RNA Interferente Pequeno/metabolismo , Receptores de LDL/metabolismo , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
15.
Hum Mol Genet ; 12(18): 2255-67, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12915479

RESUMO

Rhizomelic chondrodysplasia punctata is a human autosomal recessive disorder characterized by skeletal, eye and brain abnormalities. The disorder is caused by mutations in the PEX7 gene, which encodes the receptor for a class of peroxisomal matrix enzymes. We describe the generation and characterization of a Pex7 mouse knockout (Pex7(-/-)). Pex7(-/-) mice are born severely hypotonic and have a growth impairment. Mortality in Pex7(-/-) mice is highest in the perinatal period although some Pex7(-/-) mice survived beyond 18 months. Biochemically Pex7(-/-) mice display the abnormalities related to a Pex7 deficiency, i.e. a severe depletion of plasmalogens, impaired alpha-oxidation of phytanic acid and impaired beta-oxidation of very-long-chain fatty acids. In the intermediate zone of the developing cerebral cortex Pex7(-/-) mice have an increase in neuronal density. In vivo neuronal birthdating revealed that Pex7(-/-) mice have a delay in neuronal migration. Analysis of bone ossification in newborn Pex7(-/-) mice revealed a defect in ossification of distal bone elements of the limbs as well as parts of the skull and vertebrae. These findings demonstrate that Pex7 knockout mice provide an important model to study the role of peroxisomal functioning in the pathogenesis of the human disorder.


Assuntos
Movimento Celular , Condrodisplasia Punctata Rizomélica/genética , Neurônios/metabolismo , Osteogênese , Receptores Citoplasmáticos e Nucleares/genética , Acetil-CoA C-Acetiltransferase/biossíntese , Animais , Animais Recém-Nascidos , Encéfalo/enzimologia , Células Cultivadas , Condrodisplasia Punctata Rizomélica/mortalidade , Condrodisplasia Punctata Rizomélica/patologia , Dieta , Fibroblastos/citologia , Fibroblastos/metabolismo , Marcação de Genes , Fígado/enzimologia , Camundongos , Camundongos Knockout , Mutação , Osteoblastos/ultraestrutura , Osteoclastos/ultraestrutura , Oxirredução , Receptor 2 de Sinal de Orientação para Peroxissomos , Peroxissomos/metabolismo , Ácido Fitânico/metabolismo , Fitol/metabolismo , Plasmalogênios/biossíntese , Receptores Citoplasmáticos e Nucleares/deficiência , Fatores de Tempo
16.
Mol Biol Cell ; 14(6): 2385-98, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12808037

RESUMO

The adaptor appendage domains are believed to act as binding platforms for coated vesicle accessory proteins. Using glutathione S-transferase pulldowns from pig brain cytosol, we find three proteins that can bind to the appendage domains of both the AP-1 gamma subunit and the GGAs: gamma-synergin and two novel proteins, p56 and p200. p56 elicited better antibodies than p200 and was generally more tractable. Although p56 and gamma-synergin bind to both GGA and gamma appendages in vitro, immunofluorescence labeling of nocodazole-treated cells shows that p56 colocalizes with GGAs on TGN46-positive membranes, whereas gamma-synergin colocalizes with AP-1 primarily on a different membrane compartment. Furthermore, in AP-1-deficient cells, p56 remains membrane-associated whereas gamma-synergin becomes cytosolic. Thus, p56 and gamma-synergin show very strong preferences for GGAs and AP-1, respectively, in vivo. However, the GGA and gamma appendages share the same fold as determined by x-ray crystallography, and mutagenesis reveals that the same amino acids contribute to their binding sites. By overexpressing wild-type GGA and gamma appendage domains in cells, we can drive p56 and gamma-synergin, respectively, into the cytosol, suggesting a possible mechanism for selectively disrupting the two pathways.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte/metabolismo , Fatores de Ribosilação do ADP/genética , Complexo 1 de Proteínas Adaptadoras , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/genética , Genes Reporter , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína
17.
Mol Biol Cell ; 14(2): 625-41, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12589059

RESUMO

We have used GST pulldowns from A431 cell cytosol to identify three new binding partners for the gamma-adaptin appendage: Snx9, ARF GAP1, and a novel ENTH domain-containing protein, epsinR. EpsinR is a highly conserved protein that colocalizes with AP-1 and is enriched in purified clathrin-coated vesicles. However, it does not require AP-1 to get onto membranes and remains membrane-associated in AP-1-deficient cells. Moreover, although epsinR binds AP-1 via its COOH-terminal domain, its NH(2)-terminal ENTH domain can be independently recruited onto membranes, both in vivo and in vitro. Brefeldin A causes epsinR to redistribute into the cytosol, and recruitment of the ENTH domain requires GTPgammaS, indicating that membrane association is ARF dependent. In protein-lipid overlay assays, the epsinR ENTH domain binds to PtdIns(4)P, suggesting a possible mechanism for ARF-dependent recruitment onto TGN membranes. When epsinR is depleted from cells by RNAi, cathepsin D is still correctly processed intracellularly to the mature form. This indicates that although epsinR is likely to be an important component of the AP-1 network, it is not necessary for the sorting of lysosomal enzymes.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte/fisiologia , Fator de Transcrição AP-1/química , Animais , Brefeldina A/farmacologia , Células COS , Proteínas de Transporte/química , Linhagem Celular , Citosol/metabolismo , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Immunoblotting , Lisossomos/metabolismo , Microscopia Eletrônica , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Transcrição AP-1/metabolismo , Transfecção , Células Tumorais Cultivadas
18.
Am J Hum Genet ; 70(3): 612-24, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11781871

RESUMO

Rhizomelic chondrodysplasia punctata (RCDP) is a genetically heterogeneous, autosomal recessive disorder of peroxisomal metabolism that is clinically characterized by symmetrical shortening of the proximal long bones, cataracts, periarticular calcifications, multiple joint contractures, and psychomotor retardation. Most patients with RCDP have mutations in the PEX7 gene encoding peroxin 7, the cytosolic PTS2-receptor protein required for targeting a subset of enzymes to peroxisomes. These enzymes are deficient in cells of patients with RCDP, because of their mislocalization to the cytoplasm. We report the mutational spectrum in the PEX7 gene of 78 patients (including five pairs of sibs) clinically and biochemically diagnosed with RCDP type I. We found 22 different mutations, including 18 novel ones. Furthermore, we show by functional analysis that disease severity correlates with PEX7 allele activity: expression of eight different alleles from patients with severe RCDP failed to restore the targeting defect in RCDP fibroblasts, whereas two alleles found only in patients with mild disease complemented the targeting defect upon overexpression. Surprisingly, one of the mild alleles comprises a duplication of nucleotides 45-52, which is predicted to lead to a frameshift at codon 17 and an absence of functional peroxin 7. The ability of this allele to complement the targeting defect in RCDP cells suggests that frame restoration occurs, resulting in full-length functional peroxin 7, which leads to amelioration of the predicted severe phenotype. This was confirmed in vitro by expression of the eight-nucleotide duplication-containing sequence fused in different reading frames to the coding sequence of firefly luciferase in COS cells.


Assuntos
Alelos , Condrodisplasia Punctata Rizomélica/genética , Mutação/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Condrodisplasia Punctata Rizomélica/classificação , Condrodisplasia Punctata Rizomélica/enzimologia , Condrodisplasia Punctata Rizomélica/patologia , Códon/genética , Análise Mutacional de DNA , Fibroblastos , Mutação da Fase de Leitura/genética , Genes Recessivos/genética , Genes Reporter/genética , Teste de Complementação Genética , Homozigoto , Humanos , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Receptor 2 de Sinal de Orientação para Peroxissomos , Fenótipo , Dobramento de Proteína , Estrutura Secundária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Sequências Repetitivas de Aminoácidos/genética , Alinhamento de Sequência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...