Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113537, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461543

RESUMO

The Paα line (1875.13 nm) in the near-infrared (NIR) region was evaluated to apply Stark broadening of the line spectrum to the electron density measurement of the small-pellet ablation cloud in Heliotron J, a medium-sized helical-axis heliotron device. Paα is three-to-four times broader than the visible Hß line (486.13 nm) for the same electron density. Using a portable NIR spectrometer, preliminary proof-of-concept experiments determined the marginal density, below which the broadening was undetectable. The lower detection density limit can be decreased using a narrower entrance slit or a denser grating.

2.
Sci Rep ; 12(1): 14204, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987922

RESUMO

Understanding pellet ablation physics is crucial to realizing efficient fueling into a high temperature plasma for the steady state operation of ITER and future fusion reactors. Here we report the first observation of the formation of fluctuation structures in the pellet plasmoid during the pellet ablation process by a fast camera in a medium-sized fusion device, Heliotron J. The fluctuation has a normalized fluctuation level of ~ 15% and propagates around the moving pellet across the magnetic field. By comparing the fluctuation structures with the shape of magnetic field lines calculated with the field line tracing code, we successfully reconstruct the spatio-temporal structure of the fluctuations during the pellet ablation process. The fluctuations are located at the locations displaced toroidally from the pellet and propagate in the cross-field direction around the pellet axis along the field line, indicating a three-dimensional behavior and structure of fluctuations. The fluctuation would be driven by a strong inhomogeneity formed around the pellet and invoke the relaxation of the gradient through a cross-field transport induced by the fluctuations, which could affect the pellet ablation and pellet fueling processes. Such fluctuations can be ubiquitously present at the inhomogeneity formed around a pellet in the pellet ablation process in fusion devices.

3.
Phys Rev Lett ; 124(2): 025002, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004031

RESUMO

The transition between isotope-mixing and nonmixing states in hydrogen-deuterium mixture plasmas is observed in the isotope (hydrogen and deuterium) mixture plasma in the Large Helical Device. In the nonmixing state, the isotope density ratio profile is nonuniform when the beam fueling isotope species differs from the recycling isotope species and the profile varies significantly depending on the ratio of the recycling isotope species, although the electron density profile shape is unchanged. The fast transition from nonmixing state to isotope-mixing state (nearly uniform profile of isotope ion density ratio) is observed associated with the change of electron density profile from peaked to hollow profile by the pellet injection near the plasma periphery. The transition from nonmixing to isotope-mixing state strongly correlates with the increase of turbulence measurements and the transition of turbulence state from TEM to ion temperature gradient is predicted by gyrokinetic simulation.

4.
Rev Sci Instrum ; 89(10): 10D129, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399947

RESUMO

A simple near-infrared (NIR) spectrometer with a wavelength range of 898-2130 nm has recently been applied to diagnose Heliotron J plasmas. It adopts a symmetrical crossed Czerny-Turner mount equipped with a thermoelectrically cooled 512 channel InGaAs linear sensor. Reciprocal linear dispersion was deduced to 96.37 nm/mm at the center of the detector. External filters can be inserted into the path of the collection optics to reject second-order spectra, as needed. Absolute intensity calibration was performed together with a visible spectrometer using a tungsten halogen lamp, and the effect of the transmittance fringe in the visible region of the applied long-pass filter on the NIR calibration was investigated. The intended application of the NIR spectrometer includes extending the wavelength region of a spectral monitor to less contaminated regions for Heliotron J plasma studies. In preliminary measurements, we observed the Paschen series for the hydrogen pellet injection plasma and two atomic helium lines, i.e., 2S-2P singlet and triplet lines, in helium gas puffing experiments. A continuum spectrum in this regime that is attributable to black-body radiation from hot spots on the plasma-facing components was identified. In addition, this may also be used to monitor background radiation in the YAG-Thomson scattering signals near 1064 nm.

5.
Rev Sci Instrum ; 87(10): 103503, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27802740

RESUMO

An injection barrel was designed and fabricated for a small size 0.8 mm cryogenic pellet with a low speed of 200-300 m/s in medium-sized plasma fusion devices. Pellet injection with pneumatic acceleration was examined using a conventional in situ technique. A tapered structure was applied in the downstream side of the injection barrel to satisfy the requirement of pellet speed reduction by expansion of the propellant gas. Shadowgraph and light gate measurements show that the intact pellets have speeds of 260 ± 30 m/s and a typical size of 1.1-1.2 mm. The pellet ablation code based on a neutral gas shielding model shows that the penetration depth of the measured pellet parameters does not cross the plasma center, even in medium-sized plasma devices such as the Heliotron J helical device. The injection barrel with a tapered structure developed in this study is feasible for low speed pellet injection.

6.
Rev Sci Instrum ; 85(11): 11D822, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430235

RESUMO

Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

7.
Rev Sci Instrum ; 83(9): 093506, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020375

RESUMO

To investigate the behavior of hydrogen pellet ablation, a novel method of high-speed imaging spectroscopy has been used in the Large Helical Device (LHD) for identifying the internal distribution of the electron density and temperature of the plasma cloud surrounding the pellet. This spectroscopic system consists of a five-branch fiberscope and a fast camera, with each objective lens having a different narrow-band optical filter for the hydrogen Balmer lines and the background continuum radiation. The electron density and temperature in the plasma cloud are obtained, with a spatial resolution of about 6 mm and a temporal resolution of 5 × 10(-5) s, from the intensity ratio measured through these filters. To verify the imaging, the average electron density and temperature also have been measured from the total emission by using a photodiode, showing that both density and temperature increase with time during the pellet ablation. The electron density distribution ranging from 10(22) to 10(24) m(-3) and the temperature distribution around 1 eV have been observed via imaging. The electron density and temperature of a 0.1 m plasma cloud are distributed along the magnetic field lines and a significant electron pressure forms in the plasma cloud for typical experimental conditions of the LHD.

8.
Rev Sci Instrum ; 82(2): 023505, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361593

RESUMO

A low speed single barrel pellet injector, using a mechanical punch device has been developed for alternative injection in the large helical device. A pellet is injected by the combined operation of a mechanical punch and a pneumatic propellant system. The pellet shape is cylindrical, 3 mm in diameter and 3 mm in length. Using this technique the speed of the pellet can be controlled flexibly in the range of 100-450 m/s, and a higher speed can be feasible for a higher gas pressure. The injector is equipped with a guide tube selector to direct the pellet to different injection locations. Pellets are exposed to several curved parts with the curvature radii R(c) = 0.8 and 0.3 m when they are transferred in guided tubes to the respective injection locations. Pellet speed variation with pressure at different pellet formation temperatures has been observed. Pellet intactness tests through these guide tubes show a variation in the intact speed limit over a range of pellet formation temperatures from 6.5 to 9.8 K. Pellet speed reduction of less than 6% has been observed after the pellet moves through the curved guide tubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...