Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 10(1): 93, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684669

RESUMO

Loss-of-function variants in the PRKN gene encoding the ubiquitin E3 ligase PARKIN cause autosomal recessive early-onset Parkinson's disease (PD). Extensive in vitro and in vivo studies have reported that PARKIN is involved in multiple pathways of mitochondrial quality control, including mitochondrial degradation and biogenesis. However, these findings are surrounded by substantial controversy due to conflicting experimental data. In addition, the existing PARKIN-deficient mouse models have failed to faithfully recapitulate PD phenotypes. Therefore, we have investigated the mitochondrial role of PARKIN during ageing and in response to stress by employing a series of conditional Parkin knockout mice. We report that PARKIN loss does not affect oxidative phosphorylation (OXPHOS) capacity and mitochondrial DNA (mtDNA) levels in the brain, heart, and skeletal muscle of aged mice. We also demonstrate that PARKIN deficiency does not exacerbate the brain defects and the pro-inflammatory phenotype observed in mice carrying high levels of mtDNA mutations. To rule out compensatory mechanisms activated during embryonic development of Parkin-deficient mice, we generated a mouse model where loss of PARKIN was induced in adult dopaminergic (DA) neurons. Surprisingly, also these mice did not show motor impairment or neurodegeneration, and no major transcriptional changes were found in isolated midbrain DA neurons. Finally, we report a patient with compound heterozygous PRKN pathogenic variants that lacks PARKIN and has developed PD. The PARKIN deficiency did not impair OXPHOS activities or induce mitochondrial pathology in skeletal muscle from the patient. Altogether, our results argue that PARKIN is dispensable for OXPHOS function in adult mammalian tissues.

3.
Methods Mol Biol ; 2675: 181-194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258764

RESUMO

Feeding of stable 13C-labeled compounds coupled to mass spectrometric analysis has enabled the characterization of dynamic metabolite partitioning in various experimental conditions. This information is particularly relevant for the study and functional understanding of brain metabolic heterogeneity. We here describe a protocol for the analysis of metabolic enrichment analysis upon feeding of murine acute cerebellar slices with 13C-labeled substrates.


Assuntos
Encéfalo , Camundongos , Animais , Marcação por Isótopo/métodos , Isótopos de Carbono/química , Espectrometria de Massas
4.
Methods Mol Biol ; 2615: 107-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36807788

RESUMO

Mitochondria are equipped with their own DNA (mtDNA), which is packed into structures termed nucleoids . While nucleoids can be visualized in situ by fluorescence microscopy , the advent of super-resolution microscopy , and in particular of stimulated emission depletion (STED), has recently enabled the visualization of nucleoids at sub-diffraction resolution. Super-resolution microscopy has proved an invaluable tool for addressing fundamental questions in mitochondrial biology. In this chapter I describe how to achieve efficient labeling of mtDNA and how to quantify nucleoid diameter using an automated approach in fixed cultured cells by STED microscopy .


Assuntos
DNA Mitocondrial , Mitocôndrias , Mitocôndrias/genética , Microscopia de Fluorescência , DNA Mitocondrial/genética , Células Cultivadas
5.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35662414

RESUMO

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais , Animais , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dimerização , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA Citoplasmático Pequeno , Partícula de Reconhecimento de Sinal , Transcrição Gênica
6.
Cell Rep ; 38(7): 110370, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172139

RESUMO

The transition between quiescence and activation in neural stem and progenitor cells (NSPCs) is coupled with reversible changes in energy metabolism with key implications for lifelong NSPC self-renewal and neurogenesis. How this metabolic plasticity is ensured between NSPC activity states is unclear. We find that a state-specific rewiring of the mitochondrial proteome by the i-AAA peptidase YME1L is required to preserve NSPC self-renewal. YME1L controls the abundance of numerous mitochondrial substrates in quiescent NSPCs, and its deletion activates a differentiation program characterized by broad metabolic changes causing the irreversible shift away from a fatty-acid-oxidation-dependent state. Conditional Yme1l deletion in adult NSPCs in vivo results in defective self-renewal and premature differentiation, ultimately leading to NSPC pool depletion. Our results disclose an important role for YME1L in coordinating the switch between metabolic states of NSPCs and suggest that NSPC fate is regulated by compartmentalized changes in protein network dynamics.


Assuntos
Células-Tronco Adultas/metabolismo , Autorrenovação Celular , Metaloendopeptidases/metabolismo , Mitocôndrias/enzimologia , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Animais , Proliferação de Células , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Deleção de Genes , Metaloendopeptidases/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Células-Tronco Neurais/citologia , Nucleotídeos/metabolismo , Oxirredução , Proteólise , Proteoma/metabolismo
7.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462320

RESUMO

Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Animais , Replicação do DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas de Grupo de Alta Mobilidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Front Cell Dev Biol ; 8: 592651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195262

RESUMO

The endoplasmic reticulum (ER) and mitochondria are classically regarded as very dynamic organelles in cell lines. Their frequent morphological changes and repositioning underlie the transient generation of physical contact sites (so-called mitochondria-ER contacts, or MERCs) which are believed to support metabolic processes central for cellular signaling and function. The extent of regulation over these organelle dynamics has likely further achieved a higher level of complexity in polarized cells like neurons and astrocytes to match their elaborated geometries and specialized functions, thus ensuring the maintenance of MERCs at metabolically demanding locations far from the soma. Yet, live imaging of adult brain tissue has recently revealed that the true extent of mitochondrial dynamics in astrocytes is significantly lower than in cell culture settings. On one hand, this suggests that organelle dynamics in mature astroglia in vivo may be highly regulated and perhaps triggered only by defined physiological stimuli. On the other hand, this extent of control may greatly facilitate the stabilization of those MERCs required to maintain regionalized metabolic domains underlying key astrocytic functions. In this perspective, we review recent evidence suggesting that the resulting spatial distribution of mitochondria and ER in astrocytes in vivo may create the conditions for maintaining extensive MERCs within specialized territories - like perivascular endfeet - and discuss the possibility that their enrichment at these distal locations may facilitate specific forms of cellular plasticity relevant for physiology and disease.

9.
Hum Mol Genet ; 29(17): 2845-2854, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32766765

RESUMO

Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation disorder (LBSL) arises from mutations in mitochondrial aspartyl-tRNA synthetase (DARS2) gene. The disease has a childhood or juvenile-onset and is clinically characterized by cerebellar ataxia, cognitive decline and distinct morphological abnormalities upon magnetic resonance imaging. We previously demonstrated that neurons and not adult myelin-producing cells are specifically sensitive to DARS2 loss, hence likely the primary culprit in LBSL disorder. We used conditional Purkinje cell (PCs)-specific Dars2 deletion to elucidate further the cell-type-specific contribution of this class of neurons to the cerebellar impairment observed in LBSL. We show that DARS2 depletion causes a severe mitochondrial dysfunction concomitant with a massive loss of PCs by the age of 15 weeks, thereby rapidly deteriorating motor skills. Our findings conclusively show that DARS2 is indispensable for PC survival and highlights the central role of neuroinflammation in DARS2-related PC degeneration.


Assuntos
Aspartato-tRNA Ligase/deficiência , Ataxia Cerebelar/genética , Leucoencefalopatias/genética , Doenças Mitocondriais/genética , Bainha de Mielina/genética , Neurônios/metabolismo , Animais , Aspartato-tRNA Ligase/genética , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Sobrevivência Celular/genética , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Ácido Láctico/metabolismo , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/patologia , Mutação/genética , Neurônios/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
10.
Cell Metab ; 31(4): 791-808.e8, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220306

RESUMO

Astrocytes have emerged for playing important roles in brain tissue repair; however, the underlying mechanisms remain poorly understood. We show that acute injury and blood-brain barrier disruption trigger the formation of a prominent mitochondrial-enriched compartment in astrocytic endfeet, which enables vascular remodeling. Integrated imaging approaches revealed that this mitochondrial clustering is part of an adaptive response regulated by fusion dynamics. Astrocyte-specific conditional deletion of Mitofusin 2 (Mfn2) suppressed perivascular mitochondrial clustering and disrupted mitochondria-endoplasmic reticulum (ER) contact sites. Functionally, two-photon imaging experiments showed that these structural changes were mirrored by impaired mitochondrial Ca2+ uptake leading to abnormal cytosolic transients within endfeet in vivo. At the tissue level, a compromised vascular complexity in the lesioned area was restored by boosting mitochondrial-ER perivascular tethering in MFN2-deficient astrocytes. These data unmask a crucial role for mitochondrial dynamics in coordinating astrocytic local domains and have important implications for repairing the injured brain.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/irrigação sanguínea , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Remodelação Vascular , Animais , Astrócitos , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Neurosci ; 39(42): 8200-8208, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619488

RESUMO

Mitochondria play many important biological roles, including ATP production, lipid biogenesis, ROS regulation, and calcium clearance. In neurons, the mitochondrion is an essential organelle for metabolism and calcium homeostasis. Moreover, mitochondria are extremely dynamic and able to divide, fuse, and move along microtubule tracks to ensure their distribution to the neuronal periphery. Mitochondrial dysfunction and altered mitochondrial dynamics are observed in a wide range of conditions, from impaired neuronal development to various neurodegenerative diseases. Novel imaging techniques and genetic tools provide unprecedented access to the physiological roles of mitochondria by visualizing mitochondrial trafficking, morphological dynamics, ATP generation, and ultrastructure. Recent studies using these new techniques have unveiled the influence of mitochondria on axon branching, synaptic function, calcium regulation with the ER, glial cell function, neurogenesis, and neuronal repair. This review provides an overview of the crucial roles played by mitochondria in the CNS in physiological and pathophysiological conditions.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Animais , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Doenças Neurodegenerativas/patologia , Neurogênese/fisiologia , Neurônios/patologia
12.
PLoS Genet ; 15(6): e1008085, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170154

RESUMO

Mitochondrial dynamics is an essential physiological process controlling mitochondrial content mixing and mobility to ensure proper function and localization of mitochondria at intracellular sites of high-energy demand. Intriguingly, for yet unknown reasons, severe impairment of mitochondrial fusion drastically affects mtDNA copy number. To decipher the link between mitochondrial dynamics and mtDNA maintenance, we studied mouse embryonic fibroblasts (MEFs) and mouse cardiomyocytes with disruption of mitochondrial fusion. Super-resolution microscopy revealed that loss of outer mitochondrial membrane (OMM) fusion, but not inner mitochondrial membrane (IMM) fusion, leads to nucleoid clustering. Remarkably, fluorescence in situ hybridization (FISH), bromouridine labeling in MEFs and assessment of mitochondrial transcription in tissue homogenates revealed that abolished OMM fusion does not affect transcription. Furthermore, the profound mtDNA depletion in mouse hearts lacking OMM fusion is not caused by defective integrity or increased mutagenesis of mtDNA, but instead we show that mitochondrial fusion is necessary to maintain the stoichiometry of the protein components of the mtDNA replisome. OMM fusion is necessary for proliferating MEFs to recover from mtDNA depletion and for the marked increase of mtDNA copy number during postnatal heart development. Our findings thus link OMM fusion to replication and distribution of mtDNA.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Animais , Variações do Número de Cópias de DNA/genética , Replicação do DNA/genética , Fibroblastos , Humanos , Hibridização in Situ Fluorescente , Fusão de Membrana/genética , Camundongos , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo , Mutagênese , Miócitos Cardíacos/metabolismo , Transcrição Gênica
13.
Mol Cell ; 69(1): 9-23.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290614

RESUMO

How mtDNA replication is terminated and the newly formed genomes are separated remain unknown. We here demonstrate that the mitochondrial isoform of topoisomerase 3α (Top3α) fulfills this function, acting independently of its nuclear role as a component of the Holliday junction-resolving BLM-Top3α-RMI1-RMI2 (BTR) complex. Our data indicate that mtDNA replication termination occurs via a hemicatenane formed at the origin of H-strand replication and that Top3α is essential for resolving this structure. Decatenation is a prerequisite for separation of the segregating unit of mtDNA, the nucleoid, within the mitochondrial network. The importance of this process is highlighted in a patient with mitochondrial disease caused by biallelic pathogenic variants in TOP3A, characterized by muscle-restricted mtDNA deletions and chronic progressive external ophthalmoplegia (CPEO) plus syndrome. Our work establishes Top3α as an essential component of the mtDNA replication machinery and as the first component of the mtDNA separation machinery.


Assuntos
Segregação de Cromossomos/genética , Replicação do DNA/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Mitocondrial/biossíntese , Dinâmica Mitocondrial/genética , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Células HeLa , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/genética
14.
Biochem Biophys Res Commun ; 500(1): 17-25, 2018 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28676398

RESUMO

Mitochondria are increasingly recognized for playing important roles in regulating the evolving metabolic state of mammalian cells. This is particularly true for nerve cells, as dysregulation of mitochondrial dynamics is invariably associated with a number of neuropathies. Accumulating evidence now reveals that changes in mitochondrial dynamics and structure may play equally important roles also in the cell biology of astroglial cells. Astroglial cells display significant heterogeneity in their morphology and specialized functions across different brain regions, however besides fundamental differences they seem to share a surprisingly complex meshwork of mitochondria, which is highly suggestive of tightly regulated mechanisms that contribute to maintain this unique architecture. Here, we summarize recent work performed in astrocytes in situ indicating that this may indeed be the case, with astrocytic mitochondrial networks shown to experience rapid dynamic changes in response to defined external cues. Although the mechanisms underlying this degree of mitochondrial re-shaping are far from being understood, recent data suggest that they may contribute to demarcate astrocyte territories undergoing key signalling and metabolic functions.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Doenças dos Nervos Cranianos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Animais , Astrócitos/patologia , Transporte Biológico , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Cálcio/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Doenças dos Nervos Cranianos/genética , Doenças dos Nervos Cranianos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
15.
Cell Metab ; 26(2): 429-436.e4, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768180

RESUMO

Mutations of mtDNA cause mitochondrial diseases and are implicated in age-associated diseases and aging. Pathogenic mtDNA mutations are often present in a fraction of all mtDNA copies, and it has been widely debated whether the proportion of mutant genomes or the absolute number of wild-type molecules determines if oxidative phosphorylation (OXPHOS) will be impaired. Here, we have studied the male infertility phenotype of mtDNA mutator mice and demonstrate that decreasing mtDNA copy number worsens mitochondrial aberrations of spermatocytes and spermatids in testes, whereas an increase in mtDNA copy number rescues the fertility phenotype and normalizes testes morphology as well as spermatocyte proteome changes. The restoration of testes function occurs in spite of unaltered total mtDNA mutation load. We thus demonstrate that increased copy number of mtDNA can efficiently ameliorate a severe disease phenotype caused by mtDNA mutations, which has important implications for developing future strategies for treatment of mitochondrial dysfunction.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Infertilidade Masculina , Mutação , Espermatócitos , Testículo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Masculino , Camundongos , Camundongos Transgênicos , Espermatócitos/metabolismo , Espermatócitos/patologia , Testículo/metabolismo , Testículo/patologia
16.
PLoS Genet ; 11(8): e1005423, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247782

RESUMO

We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50-70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.


Assuntos
Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliadenilação , Biossíntese de Proteínas , Proteólise , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
17.
J Clin Invest ; 125(5): 1873-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822020

RESUMO

Parkin and the glial cell line-derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson's disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD.


Assuntos
Neurônios Dopaminérgicos/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Degeneração Neural/patologia , Transtornos Parkinsonianos/genética , Proteínas Proto-Oncogênicas c-ret/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Ansiedade/genética , Linhagem Celular , Tamanho Celular , Progressão da Doença , Comportamento Exploratório , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/patologia , NF-kappa B/fisiologia , Transtornos Parkinsonianos/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-ret/deficiência , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Recombinantes de Fusão/metabolismo , Teste de Desempenho do Rota-Rod , Transdução de Sinais , Substância Negra/patologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
18.
Neuron ; 85(4): 710-7, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25661179

RESUMO

Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing.


Assuntos
Encéfalo/fisiologia , Período Crítico Psicológico , Meio Ambiente , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/citologia , Células Cultivadas , Embrião de Mamíferos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Neurogênese , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Fatores de Tempo , Transfecção
19.
J Cell Biol ; 208(4): 429-42, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25688136

RESUMO

Mitochondria form a dynamic network within the cell as a result of balanced fusion and fission. Despite the established role of mitofusins (MFN1 and MFN2) in mitochondrial fusion, only MFN2 has been associated with metabolic and neurodegenerative diseases, which suggests that MFN2 is needed to maintain mitochondrial energy metabolism. The molecular basis for the mitochondrial dysfunction encountered in the absence of MFN2 is not understood. Here we show that loss of MFN2 leads to impaired mitochondrial respiration and reduced ATP production, and that this defective oxidative phosphorylation process unexpectedly originates from a depletion of the mitochondrial coenzyme Q pool. Our study unravels an unexpected and novel role for MFN2 in maintenance of the terpenoid biosynthesis pathway, which is necessary for mitochondrial coenzyme Q biosynthesis. The reduced respiratory chain function in cells lacking MFN2 can be partially rescued by coenzyme Q10 supplementation, which suggests a possible therapeutic strategy for patients with diseases caused by mutations in the Mfn2 gene.


Assuntos
Transporte de Elétrons/genética , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/enzimologia , Ubiquinona/análogos & derivados , Trifosfato de Adenosina/biossíntese , Animais , Células Cultivadas , Dinaminas/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dinâmica Mitocondrial/fisiologia , Fosforilação Oxidativa , Interferência de RNA , RNA Interferente Pequeno , Terpenos/metabolismo , Ubiquinona/biossíntese
20.
EMBO J ; 33(4): 341-55, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24473149

RESUMO

Parkinson's disease (PD)-associated Pink1 and Parkin proteins are believed to function in a common pathway controlling mitochondrial clearance and trafficking. Glial cell line-derived neurotrophic factor (GDNF) and its signaling receptor Ret are neuroprotective in toxin-based animal models of PD. However, the mechanism by which GDNF/Ret protects cells from degenerating remains unclear. We investigated whether the Drosophila homolog of Ret can rescue Pink1 and park mutant phenotypes. We report that a signaling active version of Ret (Ret(MEN2B) rescues muscle degeneration, disintegration of mitochondria and ATP content of Pink1 mutants. Interestingly, corresponding phenotypes of park mutants were not rescued, suggesting that the phenotypes of Pink1 and park mutants have partially different origins. In human neuroblastoma cells, GDNF treatment rescues morphological defects of PINK1 knockdown, without inducing mitophagy or Parkin recruitment. GDNF also rescues bioenergetic deficits of PINK knockdown cells. Furthermore, overexpression of Ret(MEN2B) significantly improves electron transport chain complex I function in Pink1 mutant Drosophila. These results provide a novel mechanism underlying Ret-mediated cell protection in a situation relevant for human PD.


Assuntos
Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Mitocôndrias Musculares/ultraestrutura , Atrofia Muscular/prevenção & controle , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Proto-Oncogênicas c-ret/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Complexo I de Transporte de Elétrons/fisiologia , Genes Letais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Neuroblastoma/patologia , Neurônios/ultraestrutura , Consumo de Oxigênio , Doença de Parkinson , Fenótipo , Proteínas Quinases/deficiência , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-ret/genética , Pupa , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...