Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 274: 129922, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33601304

RESUMO

Sludge ozonation, which promotes sludge disintegration and solubilization, is a promising technology for reducing waste sludge volume from biological wastewater treatment process. However, if this technology is to be widely adopted, reducing the energy consumption associated with ozone generation will be necessary. We used ultra-fine bubbles (UFBs) as ozone carriers to determine if their use could improve the efficiency of ozone treatment and reduce the ozone dose required. We used a spiral, liquid-type UFB generator, which can introduce UFBs directly into a sludge suspension. The death ratio of bacteria in sludge was used as an indicator of sludge reduction. The ozone requirement was reduced by UFBs. The ozone consumption required to achieve a death ratio of 80% was 15 mg-O3/g-MLSS in the sludge treated with ozone supplied by UFBs versus 25 and 45 mg-O3/g-MLSS in sludges treated with ozone supplied as a spiral, liquid-type microbubbles and by a diffuser, respectively. When mixing water ozonated with UFBs with sludge, the depth of the dead cell layer from the surface to the interior of the sludge floc was larger than that of ozonated water lacking UFBs at the same rate of ozone consumption. Ozone in UFBs kills bacteria inside the flocs. However, the fragmentation of sludge flocs by shear forces in the UFB generator made a larger contribution to the acceleration of bacterial death in sludge treated with ozone supplied by UFBs.


Assuntos
Ozônio , Esgotos , Bactérias , Microbolhas , Eliminação de Resíduos Líquidos , Água
2.
Environ Technol ; 42(8): 1225-1235, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31475875

RESUMO

A novel quantitative analysis method for cellulose fibre was developed to understand its behaviour in biological wastewater treatment and waste sludge processes. The method developed in this study was designed using Pseudomonas aeruginosa to remove it by dissolving all the organic components except cellulose from the sludge due to needing the solubilisation of bacteria occupied almost of sludge matrix and quantifying the amount of remaining cellulose. The results of this study indicated that a combined treatment process that employed 2,000 U/L protease, 2 M hydrogen peroxide, and 2 mM potassium hydroxide after pre-treatment for floc dispersion with an ultrasonic treatment at 26 W for 1 min resulted in a solubilisation of 96% of P. aeruginosa without losing the cellulose fibre. When it was applied to the cellulose fibre added in the sludge from a municipal wastewater treatment facility, 99.5% of the cellulose fibre was recovered by using the high-speed centrifuge.


Assuntos
Esgotos , Purificação da Água , Celulose , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...