Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Artif Organs ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987390

RESUMO

Neuron-specific-enolase is used as a marker of neurological prognosis after cardiopulmonary resuscitation. It is also present in red blood cells and platelets. It is not known whether hemolysis increases the values of neuron-specific-enolase enough to clinically affect its interpretation in critically ill patients who are to be introduced to veno-arterial extracorporeal oxygenation. In this study, we examined the relationships among neuron-specific-enolase and hemolysis indicators such as free hemoglobin and lactate dehydrogenase after the introduction of veno-arterial extracorporeal oxygenation. Of the 91 patients who underwent veno-arterial extracorporeal membrane oxygenation in our hospital from January 1, 2018, to February 24, 2021, 68 patients survived for more than 24 h. Of these, 14 patients who were categorized into the better cerebral performance categories (1-3) and 19 patients who were categorized into the poor neurological prognosis category (4) were included. After the introduction of veno-arterial extracorporeal membrane oxygenation, neuron-specific-enolase was markedly higher in the poor neurological prognosis group than in the good neurological prognosis group (41.6 vs. 92.0, p = 0.04). A significant positive correlation was revealed between neuron-specific-enolase and free hemoglobin in the good neurological prognosis group (rs = 0.643, p = 0.0131). A similar relationship was observed for lactate dehydrogenase and neuron-specific-enolase in both the conscious (rs = 0.737, p = 0.00263) and non-conscious groups (rs = 0.544, p = 0.0176). When neuron-specific-enolase is used as a marker for neuroprognostic evaluation, an abnormally high value is likely to indicate the lack of consciousness, whereas a lower elevation should be interpreted with caution, taking into account the effects of hemolysis.

2.
J Artif Organs ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120686

RESUMO

Neuron-specific enolase (NSE) is one of the biomarkers used as an indicator of brain disorder, but since it is also found in blood cell components, there is a concern that a spurious increase in NSE may occur after cardiovascular surgery, where cardiopulmonary bypass (CPB) causes hemolysis. In the present study, we investigated the relationship between the degree of hemolysis and NSE after cardiovascular surgery and the usefulness of immediate postoperative NSE values in the diagnosis of brain disorder. A retrospective study of 198 patients who underwent surgery with CPB in the period from May 2019 to May 2021 was conducted. Postoperative NSE levels and Free hemoglobin (F-Hb) levels were compared in both groups. In addition, to verify the relationship between hemolysis and NSE, we examined the correlation between F-Hb levels and NSE levels. We also examined whether different surgical procedures could produce an association between hemolysis and NSE. Among 198 patients, 20 had postoperative stroke (Group S) and 178 had no postoperative stroke (Group U). There was no significant difference in postoperative NSE levels and F-Hb levels between Group S and Group U (p = 0.264, p = 0.064 respectively). F-Hb and NSE were weakly correlated (r = 0.29. p < 0.01). In conclusion, NSE level immediately after cardiac surgery with CPB is modified by hemolysis rather than brain injury, therefore it would be unreliable as a biomarker of brain disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...