Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Physiol ; 9: 783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018561

RESUMO

A rise in plasma triacylglycerol levels is a common physiological occurrence during late gestation and excess of glucocorticoids (GCs) has been shown to impair lipid metabolism. Based on those observations, we investigated whether the administration of dexamethasone during the late gestational period could exacerbate this pregnancy associated hypertriacylglycerolemia in rats. For this, female Wistar rats were treated with dexamethasone (0.2 mg/kg of body mass in the drinking water on days 14-19 of pregnancy; DP group) or equivalent days in the virgin rats (DV group). Untreated pregnant rats (control pregnant group) and age-matched virgin rats (control virgin group) were used as controls. Functional, biochemical, and molecular analyses were carried out after treatment with GC and in the control groups. Euthanasia was performed on day 20 of pregnancy. The metabolic parameters of the mothers (dams) at the time of weaning and 6 months later, as well as newborn survival, were evaluated. We observed that neither dexamethasone nor pregnancy affected blood glucose or glucose tolerance. Hypertriacylglycerolemia associated with lipid intolerance or reduced hepatic triacylglycerol clearance was observed during the late gestational period. GC treatment caused a further increase in basal plasma triacylglycerol levels, but did not have a significant effect on lipid tolerance and hepatic triacylglycerol clearance in pregnant rats. GC, but not pregnancy, caused few significant changes in mRNA expression of proteins involved in lipid metabolism. Dexamethasone during pregnancy had no impact on lipid metabolism later in the dams' life; however, it led to intra-uterine growth restriction and reduced pup survival rate. In conclusion, GC exposure during the late gestational period in rats has no major impact on maternal lipid homeostasis, soon after parturition at weaning, or later in the dams' life, but GC exposure is deleterious to the newborn when high doses are administered at late gestation. These data highlight the importance of performing an individualized and rigorous control of a GC treatment during late pregnancy considering its harmful impact on the fetuses' health.

2.
Biomed Res Int ; 2017: 4378328, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28929113

RESUMO

Background. Continuous fructose consumption may cause elevation of circulating triacylglycerol. However, how much of this alteration is reverted after the removal of fructose intake is not known. We explored this question and compared the efficacy of this approach with fish oil supplementation. Methods. Male Wistar rats were divided into the following groups: control (C), fructose (F) (water intake with 10% or 30% fructose for 9 weeks), fish oil (FO), and fructose/fish oil (FFO). Fish oil was supplemented only for the last 33 days of fructose ingestion. Half of the F group remained for additional 8 weeks without fructose ingestion (FR). Results. Fructose ingestion reduced food intake to compensate for the increased energy obtained through water ingestion, independent of fructose concentration. Fish oil supplementation exerted no impact on these parameters, but the removal of fructose from water recovered both ingestion behaviors. Plasma triacylglycerol augmented significantly during the second and third weeks (both fructose groups). Fish oil supplementation did not attenuate the elevation in triacylglycerol caused by fructose intake, but the interruption of sugar consumption normalized this parameter. Conclusion. Elevation in triacylglyceridemia may be recovered by removing fructose from diet, suggesting that it is never too late to repair improper dietary habits.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Frutose/administração & dosagem , Glucose/metabolismo , Metabolismo dos Lipídeos , Animais , Dieta , Ingestão de Alimentos , Comportamento Alimentar , Óleos de Peixe/metabolismo , Frutose/metabolismo , Homeostase , Masculino , Ratos , Ratos Wistar
3.
Appl Physiol Nutr Metab ; 41(4): 382-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26939043

RESUMO

Dexamethasone is an anti-inflammatory glucocorticoid that may alter glucose and lipid homeostasis when administered in high doses or for long periods of time. Omega-3 fatty acids, present in fish oil (FO), can be used as potential modulators of intermediary glucose and lipid metabolism. Herein, we evaluate the effects of FO supplementation (1 g·kg(-1) body weight (BW)) on glucose and lipid metabolism in rats treated with dexamethasone (0.5 mg·kg(-1) BW) for 15 days. Adult male Wistar rats were distributed among 4 groups: control (saline, 1 mL·kg(-1) BW and mineral oil, 1 g·kg(-1) BW), DEX (dexamethasone and mineral oil), FO (fish oil and saline), and DFO (fish oil and dexamethasone). Dexamethasone and saline were administered intraperitoneally, and fish oil and mineral oil were administered by gavage. We evaluated functional and molecular parameters of lipid and glycemic profiles at 8 days and at the end of treatment. FO supplementation increased hepatic docosahexaenoic acid (DEX: 5.6% ± 0.7%; DFO: 10.5% ± 0.8%) and eicosapentaenoic acid (DEX: 0.3% ± 0.0%; DFO: 1.3% ± 0.1%) contents and attenuated the increase of plasma triacylglycerol, total cholesterol, and non-high-density lipoprotein cholesterol concentrations in DFO rats compared with DEX rats. These effects seem not to depend on hepatic expression of insulin receptor substrate 1, protein kinase B, peroxisome proliferator-activated receptor γ coactivator 1-α, and peroxisome proliferator-activated receptor γ. There was no effect of supplementation on body weight loss, fasting glycemia, and glucose tolerance in rats treated with dexamethasone. In conclusion, we show that FO supplementation for 15 days attenuates the dyslipidemia induced by dexamethasone treatment.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Dexametasona/efeitos adversos , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Triglicerídeos/sangue , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/metabolismo , Dislipidemias/induzido quimicamente , Dislipidemias/tratamento farmacológico , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
4.
J Steroid Biochem Mol Biol ; 145: 1-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25268311

RESUMO

OBJECTIVES: Peripheral insulin resistance (IR) is one of the main side effects caused by glucocorticoid (GC)-based therapies, and the molecular mechanisms of GC-induced IR are not yet fully elucidated. Thus, we aimed to investigate the effects of dexamethasone treatment on the main components of insulin and inflammatory signaling in the adipose tissue of rats. MATERIALS/METHODS: Male Wistar rats received daily injections of dexamethasone (1mg/kg body weight (b.w.), intraperitoneally (i.p.)) for 5 days (DEX), whereas control rats received saline (CTL). The metabolic status was investigated, and the epididymal fat fragments were collected for lipolysis and western blot analyses. RESULTS: The DEX rats became hyperglycemic, hyperinsulinemic, insulin resistant and glucose intolerant, compared with the CTL rats (P<0.05). The basal glycerol release in the fat fragments was 1.5-fold higher in the DEX rats (P<0.05). The phosphorylation of protein kinase B (PKB) at ser(473) decreased by 44%, whereas, the phosphorylation of insulin receptor substrate (IRS)-1 at ser(307) increased by 93% in the adipose tissue of the DEX rats after an oral bolus of glucose (P<0.05). The basal phosphorylation of c-jun-N-terminal kinase (JNK) and inhibitor of nuclear factor kappa-B (IKKß) proteins was reduced by 46% and 58%, respectively, in the adipose tissue of the DEX rats (P<0.05). This was paralleled with a significant reduction (47%) in the glucocorticoid receptor (GR) protein content in the adipose tissue of the DEX rats (P<0.05). CONCLUSION: The insulin-resistant status of rats induced by dexamethasone administration have PKB and IRS-1 activity attenuated in epididymal fat without increases in the phosphorylation of the proinflammatory signals JNK and IKKß.


Assuntos
Tecido Adiposo/metabolismo , Glucocorticoides/metabolismo , Quinase I-kappa B/metabolismo , MAP Quinase Quinase 4/metabolismo , Animais , Peso Corporal , Citocinas/metabolismo , Dexametasona/farmacologia , Epididimo/metabolismo , Glicogênio/metabolismo , Inflamação , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...