Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 15: 1408175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050919

RESUMO

Introduction: Schizophrenia (SCZ) and autism spectrum disorder (ASD) are neurodevelopmental diseases characterized by different psychopathological manifestations and divergent clinical trajectories. Various alterations at glutamatergic synapses have been reported in both disorders, including abnormal NMDA and metabotropic receptor signaling. Methods: We conducted a bicentric study to assess the blood serum levels of NMDA receptors-related glutamatergic amino acids and their precursors, including L-glutamate, L-glutamine, D-aspartate, L-aspartate, L-asparagine, D-serine, L-serine and glycine, in ASD, SCZ patients and their respective control subjects. Specifically, the SCZ patients were subdivided into treatment-resistant and non-treatment-resistant SCZ patients, based on their responsivity to conventional antipsychotics. Results: D-serine and D-aspartate serum reductions were found in SCZ patients compared to controls. Conversely, no significant differences between cases and controls were found in amino acid concentrations in the two ASD cohorts analyzed. Discussion: This result further encourages future research to evaluate the predictive role of selected D-amino acids as peripheral markers for SCZ pathophysiology and diagnosis.

2.
Sci Rep ; 14(1): 12463, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816452

RESUMO

The non-essential amino acid L-serine is involved in a number of metabolic pathways and in the brain its level is largely due to the biosynthesis from the glycolytic intermediate D-3-phosphoglycerate by the phosphorylated pathway (PP). This cytosolic pathway is made by three enzymes proposed to generate a reversible metabolon named the "serinosome". Phosphoserine phosphatase (PSP) catalyses the last and irreversible step, representing the driving force pushing L-serine synthesis. Genetic defects of the PP enzymes result in strong neurological phenotypes. Recently, we identified the homozygous missense variant [NM_004577.4: c.398A > G p.(Asn133Ser)] in the PSPH, the PSP encoding gene, in two siblings with a neurodevelopmental syndrome and a myelopathy. The recombinant Asn133Ser enzyme does not show significant alterations in protein conformation and dimeric oligomerization state, as well as in enzymatic activity and functionality of the reconstructed PP. However, the Asn133Ser variant is less stable than wild-type PSP, a feature also apparent at cellular level. Studies on patients' fibroblasts also highlight a strong decrease in the level of the enzymes of the PP, a partial nuclear and perinuclear localization of variant PSP and a stronger perinuclear aggregates formation. We propose that these alterations contribute to the formation of a dysfunctional serinosome and thus to the observed reduction of L-serine, glycine and D-serine levels (the latter playing a crucial role in modulating NMDA receptors). The characterization of patients harbouring the Asn133Ser PSP substitution allows to go deep into the molecular mechanisms related to L-serine deficit and to suggest treatments to cope with the observed amino acids alterations.


Assuntos
Serina , Humanos , Serina/metabolismo , Mutação de Sentido Incorreto , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fibroblastos/metabolismo , Masculino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Feminino
3.
Eur J Hum Genet ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605125

RESUMO

Copy number variants (CNVs) represent the genetic cause of about 15-20% of neurodevelopmental disorders (NDDs). We identified a ~67 kb de novo intragenic deletion on chromosome 2q22.3 in a female individual showing a developmental encephalopathy characterised by epilepsy, severe intellectual disability, speech delay, microcephaly, and thin corpus callosum with facial dysmorphisms. The microdeletion involved exons 5-6 of GTDC1, encoding a putative glycosyltransferase, whose expression is particularly enriched in the nervous system. In a previous study, a balanced de novo translocation encompassing GTDC1 was reported in a male child with global developmental delay and delayed speech and language development. Based on these premises, we explored the transcriptomic profile of our proband to evaluate the functional consequences of the novel GTDC1 de novo intragenic deletion in relation to the observed neurodevelopmental phenotype. RNA-seq on the proband's lymphoblastoid cell line (LCL) showed expression changes of glycine/serine and cytokine/chemokine signalling pathways, which are related to neurodevelopment and epileptogenesis. Subsequent analysis by ELISA (enzyme-linked immunosorbent assay) and HPLC (high-performance liquid chromatography) revealed increased levels of glycine in the proband's LCL and serum compared to matched controls. Given that an increased level of glycine has been observed in the plasma samples of individuals with Rett syndrome, a condition sharing epilepsy, microcephaly, and intellectual disability with our proband, we proposed that the GTDC1 downregulation is implicated in neurodevelopmental impairment by altering glycine metabolism. Furthermore, our findings expanded the phenotypic spectrum of the novel GTDC1-related condition, including microcephaly and epilepsy among relevant clinical features.

4.
Biofactors ; 50(1): 181-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37650587

RESUMO

In the brain, the non-essential amino acid L-serine is produced through the phosphorylated pathway (PP) starting from the glycolytic intermediate 3-phosphoglycerate: among the different roles played by this amino acid, it can be converted into D-serine and glycine, the two main co-agonists of NMDA receptors. In humans, the enzymes of the PP, namely phosphoglycerate dehydrogenase (hPHGDH, which catalyzes the first and rate-limiting step of this pathway), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase are likely organized in the cytosol as a metabolic assembly (a "serinosome"). The hPHGDH deficiency is a pathological condition biochemically characterized by reduced levels of L-serine in plasma and cerebrospinal fluid and clinically identified by severe neurological impairment. Here, three single-point variants responsible for hPHGDH deficiency and Neu-Laxova syndrome have been studied. Their biochemical characterization shows that V261M, V425M, and V490M substitutions alter either the kinetic (both maximal activity and Km for 3-phosphoglycerate in the physiological direction) and the structural properties (secondary, tertiary, and quaternary structure, favoring aggregation) of hPHGDH. All the three variants have been successfully ectopically expressed in U251 cells, thus the pathological effect is not due to hindered expression level. At the cellular level, mistargeting and aggregation phenomena have been observed in cells transiently expressing the pathological protein variants, as well as a reduced L-serine cellular level. Previous studies demonstrated that the pharmacological supplementation of L-serine in hPHGDH deficiencies could ameliorate some of the related symptoms: our results now suggest the use of additional and alternative therapeutic approaches.


Assuntos
Encefalopatias , Ácidos Glicéricos , Serina , Humanos , Serina/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/química , Encefalopatias/metabolismo , Aminoácidos
5.
Protein Sci ; 32(11): e4802, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805834

RESUMO

The human flavoenzyme D-aspartate oxidase (hDASPO) controls the level of D-aspartate in the brain, a molecule acting as an agonist of NMDA receptors and modulator of AMPA and mGlu5 receptors. hDASPO-induced D-aspartate degradation prevents age-dependent deterioration of brain functions and is related to psychiatric disorders such as schizophrenia and autism. Notwithstanding this crucial role, less is known about hDASPO regulation. Here, we report that hDASPO is nitrosylated in vitro, while no evidence of sulfhydration and phosphorylation is apparent: nitrosylation affects the activity of the human flavoenzyme to a limited extent. Furthermore, hDASPO interacts with the primate-specific protein pLG72 (a well-known negative chaperone of D-amino acid oxidase, the enzyme deputed to D-serine degradation in the human brain), yielding a ~114 kDa complex, with a micromolar dissociation constant, promoting the flavoenzyme inactivation. At the cellular level, pLG72 and hDASPO generate a cytosolic complex: the expression of pLG72 negatively affects the hDASPO level by reducing its half-life. We propose that pLG72 binding may represent a protective mechanism aimed at avoiding cytotoxicity due to H2 O2 produced by the hDASPO enzymatic degradation of D-aspartate, especially before the final targeting to peroxisomes.


Assuntos
Oxirredutases , Esquizofrenia , Animais , Humanos , Oxirredutases/metabolismo , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico , Esquizofrenia/metabolismo , Proteínas de Transporte/química
6.
FEBS J ; 290(18): 4440-4464, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166453

RESUMO

Astrocytes are essential players in development and functions, being particularly relevant as regulators of brain energy metabolism, ionic homeostasis and synaptic transmission. They are also the major source of l-serine in the brain, which is synthesized from the glycolytic intermediate 3-phosphoglycerate through the phosphorylated pathway. l-Serine is the precursor of the two main co-agonists of the N-methyl-d-aspartate receptor, glycine and d-serine. Strikingly, dysfunctions in both l- and d-serine metabolism are associated with neurological and psychiatric disorders. Here, we exploited a differentiation protocol, based on the generation of human mature astrocytes from neural stem cells, and investigated the modification of the proteomic and metabolomic profile during the differentiation process. We show that differentiated astrocytes are more similar to mature rather than to reactive ones, and that axogenesis and pyrimidine metabolism increase up to 30 days along with the folate cycle and sphingolipid metabolism. Consistent with the proliferation and cellular maturation processes that are taking place, also the intracellular levels of l-serine, glycine, threonine, l- and d-aspartate (which level is unexpectedly higher than that of d-serine) show the same biosynthetic time course. A significant utilization of l-serine from the medium is apparent while glycine is first consumed and then released with a peak at 30 days, parallel to its intracellular level. These results underline how metabolism changes during astrocyte differentiation, highlight that d-serine synthesis is restricted in differentiated astrocytes and provide a valuable model for developing potential novel therapeutic approaches to address brain diseases, especially the ones related to serine metabolism alterations.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Humanos , Astrócitos/metabolismo , Serina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Diferenciação Celular , Receptores de N-Metil-D-Aspartato/genética , Glicina/farmacologia , Glicina/metabolismo
7.
Cell Rep ; 40(10): 111271, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070700

RESUMO

Healthy aging is an ambitious aspiration for humans, but neurodegenerative disorders, such as Alzheimer's disease (AD), strongly affect quality of life. Using an integrated omics approach, we investigate alterations in the molecular composition of postmortem hippocampus samples of healthy persons and individuals with AD. Profound differences are apparent between control and AD male and female cohorts in terms of up- and downregulated metabolic pathways. A decrease in the insulin response is evident in AD when comparing the female with the male group. The serine metabolism (linked to the glycolytic pathway and generating the N-methyl-D-aspartate [NMDA] receptor coagonist D-serine) is also significantly modulated: the D-Ser/total serine ratio represents a way to counteract age-related cognitive decline in healthy men and during AD onset in women. These results show how AD changes and, in certain respects, almost reverses sex-specific proteomic and metabolomic profiles, highlighting how different pathophysiological mechanisms are active in men and women.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Insulina/metabolismo , Masculino , Proteômica , Qualidade de Vida , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
8.
Sci Rep ; 7: 46288, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393897

RESUMO

D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice.


Assuntos
Benzodiazepinas/farmacologia , D-Aspartato Oxidase/antagonistas & inibidores , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Benzodiazepinas/química , Clozapina/farmacologia , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , N-Metilaspartato/metabolismo , Olanzapina , Receptores de N-Metil-D-Aspartato/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...