Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(11): 7800-7809, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31124080

RESUMO

This study examined the effects of pinealectomy in Wistar rats and melatonin replacement therapy on the daily mRNA expression of melatonin (Tph1, Aanat, Asmt, Mt1, Mt2, and Rorα), and steroidogenic (Star, 17ßhsd3, and Lhr) related genes as well as clock genes (Rev-erbα, Bmal1, Per1, Per2, Cry1, and Cry2) in testes. The testes of control animals express the Tph1, Aanat, and Asmt and Per2 genes with 24-h rhythms in mRNA, reaching the maximal values during the dark phase. Pinealectomy abolished and melatonin treatment restored the 24-h rhythmicity. Daytime differences in mRNA expression were significant for Star, Lhr, Mt1, Mt2, Rorα, Rev-erbα, Bmal1, Cry1, and Cry2 genes in testes of control rats. Conversely, 17ßhsd3 and Per1 mRNA expression did not show a daytime difference in testes of control animals. Pinealectomy abolished the peak time of Mt1 and Mt2 mRNA expression, phase shifted the peak time of Star, Rorα, Rev-erbα, Bmal1, and Cry2 mRNA expression, downregulated the 24-h Lhr mRNA expression, and inverted the peak time of Per1, Per2, and Cry1 mRNA expression to the light phase. The melatonin replacement therapy completely restored the control levels of Lhr, Rev-erbα, and Per1 mRNA expression patterns, partially restored the daily control of Star, Mt2, Rorα, Bmal1, Cry1, and Cry2 mRNA expression but did not re-establish the daily control of Mt1 mRNA expression. This suggests that the daily mRNA expression of these genes is probably driven by pineal melatonin and melatonin treatment restores (partially or completely) the daily control of gene expression patterns.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Ritmo Circadiano , Melatonina/deficiência , Glândula Pineal/metabolismo , Triptofano Hidroxilase/metabolismo , Acetilserotonina O-Metiltransferasa/genética , Análise de Variância , Animais , Arilalquilamina N-Acetiltransferase/genética , Ritmo Circadiano/genética , Masculino , Melatonina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Testículo
2.
Neuroscience ; 284: 247-259, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25305666

RESUMO

Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference memory in the Morris water maze task. Compared to control subjects, anoxic animals exhibited increased latencies and path lengths to reach the platform, as well as decreased searching specifically for the platform location. In contrast, no significant differences were observed for swimming speeds and frequency within the target quadrant. Together, these behavioral results indicate that the poorer performance by anoxic subjects is related to spatial memory deficits and not to sensory or motor deficits. Therefore, this model of neonatal anoxia in rats induces hippocampal changes that result in cell losses and impaired hippocampal function, and these changes are likely related to spatial memory deficits in adulthood.


Assuntos
Morte Celular/fisiologia , Hipocampo/fisiopatologia , Hipóxia/fisiopatologia , Memória Espacial/fisiologia , Animais , Animais Recém-Nascidos , Asfixia Neonatal , Caspase 3/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Hipóxia/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...