Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Agents Med Chem ; 21(5): 587-596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767956

RESUMO

Bladder cancer, a life-threatening serious disease, is responsible for thousands of cancer-associated deaths worldwide. Similar to other malignancies, standard treatments of bladder cancer, such as Chemoradiotherapy, are not efficient enough in the affected patients. It means that, according to recent reports in the case of life quality as well as the survival time of bladder cancer patients, there is a critical requirement for exploring effective treatments. Recently, numerous investigations have been carried out to search for appropriate complementary treatments or adjuvants for bladder cancer therapy. Curcumin, a phenolic component with a wide spectrum of biological activities, has recently been introduced as a potential anti-cancer agent. It has been shown that this agent exerts its therapeutic effects via targeting a wide range of cellular and molecular pathways involved in bladder cancer. Herein, the current data on curcumin therapy for bladder cancer are summarized.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/metabolismo
2.
J Ovarian Res ; 13(1): 130, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148295

RESUMO

Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients' quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.


Assuntos
Curcumina/uso terapêutico , Neoplasias dos Genitais Femininos/tratamento farmacológico , Curcumina/farmacologia , Feminino , Humanos
3.
IUBMB Life ; 72(7): 1306-1321, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32233112

RESUMO

Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Autofagia , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Osteossarcoma/tratamento farmacológico , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Humanos , Terapia de Alvo Molecular , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia
4.
Phytother Res ; 34(10): 2557-2576, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32307773

RESUMO

Non-small-cell lung carcinoma (NSCLC) is one of the most lethal malignancies that include more than 80% of lung cancer cases worldwide. During the past decades, plants and plant-derived products have attracted great interest in the treatment of various human diseases. Curcumin, the turmeric isolated natural phenolic compound, has shown a promising chemo-preventive and anticancer agent. Numerous studies have shown that curcumin delays the initiation and progression of NSCLC by affecting a wide range of molecular targets and cell signalling pathways including NF-kB, Akt, MAPKS, BCL-2, ROS and microRNAs (miRNAs). However, the poor oral bioavailability and low chemical stability of curcumin remain as major challenges in the utilisation of this compound as a therapeutic agent. Different analogs of curcumin and new delivery systems (e.g., micelles, nanoparticles and liposomes) provided promising solutions to overcome these obstacles and improve curcumin pharmacokinetic profile. The present review focuses on current reported studies about anti-NSCLC effects of curcumin. NSCLC involved miRNAs whose expression is regulated by curcumin has also been discussed. Furthermore, recent researches on the use of curcumin analogs and delivery systems to enhance the curcumin benefits in NSCLC are also described.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Curcumina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Curcumina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Eur J Med Chem ; 188: 112040, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927312

RESUMO

Glioblastoma multiforme (GBM), a greatly aggressive malignancy of the brain, is correlated with a poor prognosis and low rate of survival. Up to now, chemotherapy and radiation therapy after surgical approaches have been the treatments increasing the survival rates. The low efficacy of mentioned therapies as well as their side-effects has forced researchers to explore an appropriate alternative or complementary treatment for glioblastoma. In experimental models, it has been shown that curcumin has therapeutic potentials to fight against GBM. Given that curcumin has pharmacological effects against cancer stem cells, as major causes of resistance to therapy in glioblastoma cells. Moreover, it has been showed that curcumin exerts its therapeutic effects on GBM cells via affecting on apoptosis, oxidant system, and inflammatory pathways. Curcumin would possess a synergistic impact with chemotherapeutic agents. Herein, we summarized the current findings on curcumin as therapeutic agent in the treatment of GBM.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Glioblastoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Lipídeos/química , Estrutura Molecular , Nanopartículas/química
6.
Lipids Health Dis ; 17(1): 230, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30296936

RESUMO

BACKGROUND: Chronic inflammation and increased oxidative stress significantly contribute in developing coronary artery disease (CAD). Hence, antioxidant supplementation might be an appropriate approach to decrease the incidence of CAD. This systematic review and meta-analysis was aimed to determine the effects of coenzyme Q10 (CoQ10) supplementation on lipid profile, as one of the major triggers for CAD, among patients diagnosed with coronary artery disease. METHODS: EMBASE, Scopus, PubMed, Cochrane Library, and Web of Science were searched for studies prior to May 20th, 2018. Cochrane Collaboration risk of bias tool was applied to assess the methodological quality of included trials. I-square and Q-tests were used to measure the existing heterogeneity across included studies. Considering heterogeneity among studies, fixed- or random-effect models were applied to pool standardized mean differences (SMD) as overall effect size. RESULTS: A total of eight trials (267 participants in the intervention group and 259 in placebo group) were included in the current meta-analysis. The findings showed that taking CoQ10 by patients with CAD significantly decreased total-cholesterol (SMD -1.07; 95% CI, - 1.94, - 0.21, P = 0.01) and increased HDL-cholesterol levels (SMD 1.30; 95% CI, 0.20, 2.41, P = 0.02). We found no significant effects of CoQ10 supplementation on LDL-cholesterol (SMD -0.37; 95% CI, - 0.87, 0.13, P = 0.14), lipoprotein (a) [Lp(a)] levels (SMD -1.12; 95% CI, - 2.84, 0.61, P = 0.20) and triglycerides levels (SMD 0.01; 95% CI, - 0.22, 0.24, P = 0.94). CONCLUSIONS: This meta-analysis demonstrated the promising effects of CoQ10 supplementation on lowering lipid levels among patients with CAD, though it did not affect triglycerides, LDL-cholesterol and Lp(a) levels.


Assuntos
Doença da Artéria Coronariana/sangue , Suplementos Nutricionais , Lipídeos/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Ubiquinona/análogos & derivados , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Doença da Artéria Coronariana/prevenção & controle , Humanos , Lipoproteína(a)/sangue , Lipoproteína(a)/efeitos dos fármacos , Triglicerídeos/sangue , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...