Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 31105-31119, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035933

RESUMO

Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We previously reported a flavonoid trimer-based allosteric inhibitor of FXIIIa with moderate potency and selectivity. To further advance this approach, we evaluated a series of 27 variably sulfonated heparin mimetics against human FXIIIa. Only 13 molecules exhibited inhibitory activity at the highest concentration tested with IC50 values of 2-286 µM. Specifically, inhibitor 16 demonstrated an IC50 value of 2.4 ± 0.5 µM in a bisubstrate, fluorescence-based trans-glutamination assay. It also demonstrated a significant selectivity over other clotting factors including thrombin, factor Xa, and factor XIa as well as other cysteine enzymes including papain and tissue transglutaminase 2. Inhibitor 16 did not affect the viability of three human cell lines at a concentration that is 5-fold its FXIIIa-IC50. The molecule had a very weak effect on the activated partial thromboplastin time of human plasma at a concentration of >700 µM, further supporting its functional selectivity. Importantly, molecule 16 inhibited FXIIIa-mediated polymerization of fibrin(ogen) in a concentration-dependent manner as shown by the gel electrophoresis experiment. Michaelis-Menten kinetics revealed that the molecule competes with the Gln-donor protein substrate, i.e., dimethylcasein, but not with the Lys-donor small substrate, i.e., dansylcadaverine. Molecular modeling studies revealed that this type of molecule likely binds to an anion-binding site comprising the basic amino acids of Lys54, Lys61, Lys73, Lys156, and Arg244 among others. Overall, our work puts forward a new anion-binding site, selective, nontoxic, sulfonated heparin mimetic FXIIIa inhibitor 16 for further development as an effective and safer anticoagulant.

2.
ACS Omega ; 9(9): 10694-10708, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463342

RESUMO

Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis. Consequently, inhibiting FXIIa could potentially offer a viable therapeutic approach for achieving effective and safer anticoagulation without the bleeding risks associated with the existing anticoagulants. Despite the potential, only a limited number of small molecule inhibitors targeting human FXIIa have been documented. Thus, we combined a small library of 32 triazole and triazole-like molecules to be evaluated for FXIIa inhibition by using a chromogenic substrate hydrolysis assay under physiological conditions. Initial screening at 200 µM involved 18 small molecules, revealing that 4 molecules inhibited FXIIa more than 20%. In addition to being the most potent inhibitor identified in the first round, inhibitor 8 also exhibited a substantial margin of selectivity against related serine proteases, including factors XIa, Xa, and IXa. However, the molecule also inhibited thrombin with a similar potency. It also prolonged the clotting time of human plasma, as was determined in the activated partial thromboplastin time and prothrombin time assays. Subsequent structure-activity relationship studies led to the identification of several inhibitors with submicromolar activity, among which inhibitor 22 appears to demonstrate significant selectivity not only over factors IXa, Xa, and XIa, but also over thrombin. In summary, this study introduces novel triazole-based small molecules, specifically compounds 8 and 22, identified as potent and selective inhibitors of human FXIIa. The aim is to advance these inhibitors for further development as anticoagulants to provide a more effective and safer approach to preventing and/or treating thromboembolic diseases.

3.
Pharmaceuticals (Basel) ; 16(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242518

RESUMO

Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 µM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.

4.
RPS Pharm Pharmacol Rep ; 2(1): rqad001, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36844783

RESUMO

Objective: Cathepsin G (CatG) is a cationic serine protease with wide substrate specificity. CatG is reported to play a role in several inflammatory pathologies. Thus, we aimed at identifying a potent and allosteric inhibitor of CatG to be used as a platform in further drug development opportunities. Methods: Chromogenic substrate hydrolysis assays were used to evaluate the inhibition potency and selectivity of SPGG towards CatG. Salt-dependent studies, Michaelis-Menten kinetics and SDS-PAGE were exploited to decipher the mechanism of CatG inhibition by SPGG. Molecular modelling was also used to identify a plausible binding site. Key findings: SPGG displayed an inhibition potency of 57 nM against CatG, which was substantially selective over other proteases. SPGG protected fibronectin and laminin against CatG-mediated degradation. SPGG reduced VMAX of CatG hydrolysis of a chromogenic substrate without affecting KM, suggesting an allosteric mechanism. Resolution of energy contributions indicated that non-ionic interactions contribute ~91% of binding energy, suggesting a substantial possibility of specific recognition. Molecular modelling indicated that SPGG plausibly binds to an anion-binding sequence of 109SRRVRRNRN117. Conclusion: We present the discovery of SPGG as the first small molecule, potent, allosteric glycosaminoglycan mimetic inhibitor of CatG. SPGG is expected to open a major route to clinically relevant allosteric CatG anti-inflammatory agents.

5.
Cardiovasc Hematol Agents Med Chem ; 21(2): 108-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36321236

RESUMO

BACKGROUND: Human factor XIIa (FXIIa) is a plasma serine protease that plays a significant role in several physiological and pathological processes. Animal models have revealed an important contribution of FXIIa to thromboembolic diseases. Remarkably, animals and patients with FXII deficiency appear to have normal hemostasis. Thus, FXIIa inhibition may serve as a promising therapeutic strategy to attain safer and more effective anticoagulation. Very few small molecule inhibitors of FXIIa have been reported. We synthesized and investigated a focused library of triazol-1-yl benzamide derivatives for FXIIa inhibition. METHODS: We chemically synthesized, characterized, and investigated a focused library of triazol- 1-yl benzamide derivatives for FXIIa inhibition. Using a standardized chromogenic substrate hydrolysis assay, the derivatives were evaluated for inhibiting human FXIIa. Their selectivity over other clotting factors was also evaluated using the corresponding substrate hydrolysis assays. The best inhibitor affinity to FXIIa was also determined using fluorescence spectroscopy. Effects on the clotting times (prothrombin time (PT) and activated partial thromboplastin time (APTT)) of human plasma were also studied. RESULTS: We identified a specific derivative (1) as the most potent inhibitor in this series. The inhibitor exhibited nanomolar binding affinity to FXIIa. It also exhibited significant selectivity against several serine proteases. It also selectively doubled the activated partial thromboplastin time of human plasma. CONCLUSION: Overall, this work puts forward inhibitor 1 as a potent and selective inhibitor of FXIIa for further development as an anticoagulant.


Assuntos
Coagulação Sanguínea , Fator XIIa , Animais , Humanos , Fator XIIa/metabolismo , Fator XIIa/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Tempo de Protrombina
6.
BMC Pharmacol Toxicol ; 23(1): 35, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642005

RESUMO

BACKGROUND: Ethacrynic acid (EA) is a loop diuretic that is approved orally and parenterally to manage edema-associated diseases. Nevertheless, it was earlier reported that it is also associated with bleeding upon its parenteral administration. In this report, we investigated the effects of EA on human factor XIIIa (FXIIIa) of the coagulation process using a variety of techniques. METHODS: A series of biochemical and computational methods have been used in this study. The potency and efficacy of human FXIIIa inhibition by EA was evaluated using a bisubstrate-based fluorescence trans-glutamination assay under near physiological conditions. To establish the physiological relevance of FXIIIa inhibition by EA, the effect on FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) - α2-antiplasmin complex was evaluated using SDS-PAGE experiments. The selectivity profile of EA against other coagulation proteins was assessed by evaluating EA's effect on human clotting times in the activated partial thromboplastin time (APTT) and the prothrombin time (PT) assays. We also used molecular modeling studies to put forward a putative binding mode for EA in the active site of FXIIIa. Results involving EA were the average of at least three experiments and the standard error ± 1 was provided. In determining the inhibition parameters, we used non-linear regression analysis. RESULTS: FXIIIa is a transglutaminase that works at the end of the coagulation process to form an insoluble, rigid, and cross-linked fibrin rich blood clot. In fact, inhibition of FXIIIa-mediated biological processes has been reported to result in a bleeding diathesis. Inhibition of FXIIIa by EA was investigated given the nucleophilic nature of the thiol-containing active site of the enzyme and the Michael acceptor-based electrophilicity of EA. In a bisubstrate-based fluorescence trans-glutamination assay, EA inhibited FXIIIa with a moderate potency (IC50 ~ 105 µM) and efficacy (∆Y ~ 66%). In SDS-PAGE experiments, EA appears to significantly inhibit the FXIIIa-mediated polymerization of fibrin(ogen) as well as the formation of fibrin(ogen) - α2-antiplasmin complex which indicates that EA affects the physiological functions of FXIIIa. Interestingly, EA did not affect the clotting times of human plasma in the APTT and the PT assays at the highest concentration tested of 2.5 mM suggesting the lack of effects on the coagulation serine proteases and potentially the functional selectivity of EA with respect to the clotting process. Molecular modeling studies demonstrated that the Michael acceptor of EA forms a covalent bond with catalytic residue of Cys314 in the active site of FXIIIa. CONCLUSIONS: Overall, our studies indicate that EA inhibits the physiological function of human FXIIIa in vitro which may potentially contribute to the bleeding complications that were reported with the association of the parenteral administration of EA.


Assuntos
Antifibrinolíticos , Ácido Etacrínico , Fator XIIIa , Antifibrinolíticos/farmacologia , Coagulação Sanguínea , Ácido Etacrínico/farmacologia , Fator XIIIa/antagonistas & inibidores , Fibrina/química , Humanos
7.
Chem Biol Drug Des ; 100(1): 64-79, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377529

RESUMO

Human factor XIa (FXIa) is a serine protease in the intrinsic coagulation pathway. FXIa has been actively targeted to develop new anticoagulants that are associated with a reduced risk of bleeding. Thousands of FXIa inhibitors have been reported, yet none has reached the clinic thus far. We describe here a novel class of sulfonated molecules that allosterically inhibit FXIa with moderate potency. A library of 18 sulfonated molecules was evaluated for the inhibition of FXIa using a chromogenic substrate hydrolysis assay. Only six molecules inhibited FXIa with IC50 values of 4.6-29.5 µM. Michaelis-Menten kinetics indicated that sulfonated molecules are allosteric inhibitors of FXIa. Inhibition of FXIa by these molecules was reversed by protamine. The molecules also showed moderate anticoagulant effects in human plasma with preference to prolong activated partial thromboplastin time. Their binding to an allosteric site in the catalytic domain of FXIa was modeled to illustrate potential binding mode and potential important Arg/Lys residues. Particularly, inhibitor 16 (IC50  = 4.6 µM) demonstrated good selectivity over a panel of serine proteases including those in the coagulation process. Inhibitor 16 did not significantly compromise the viability of three cell lines. Overall, the reported sulfonated molecules serve as a new platform to design selective, potent, and allosteric inhibitors of FXIa for therapeutic applications.


Assuntos
Anticoagulantes , Fator XIa , Sítio Alostérico , Anticoagulantes/farmacologia , Coagulação Sanguínea , Domínio Catalítico , Fator XIa/química , Fator XIa/metabolismo , Humanos
8.
Expert Opin Ther Pat ; 32(4): 381-400, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34991418

RESUMO

INTRODUCTION: Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED: A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION: FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.


Assuntos
Fator IX , Trombose , Animais , Anticoagulantes/efeitos adversos , Fator IX/uso terapêutico , Hemorragia/induzido quimicamente , Humanos , Patentes como Assunto , Trombose/tratamento farmacológico
9.
ACS Omega ; 6(19): 12699-12710, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056422

RESUMO

Human neutrophil elastase (HNE) is a serine protease that plays vital roles in inflammation, innate immune response, and tissue remodeling processes. HNE has been actively pursued as a drug target, particularly for the treatment of cardiopulmonary diseases. Although thousands of molecules have been reported to inhibit HNE, yet very few are being evaluated in early clinical trials, with sivelestat as the only approved HNE inhibitor. We report here a novel chemotype of sulfonated nonsaccharide heparin mimetics as potent and noncompetitive inhibitors of HNE. Using a chromogenic substrate hydrolysis assay, 14 sulfonated nonsaccharide heparin mimetics were tested for their inhibitory activity against HNE. Only 12 molecules inhibited HNE with IC50 values of 0.22-88.3 µM. The inhibition of HNE by these molecules was salt-dependent. Interestingly, a specific hexa-sulfonated molecule inhibited HNE with an IC50 value of 0.22 µM via noncompetitive mechanism, as demonstrated by Michaelis-Menten kinetics. The hexa-sulfonated derivative demonstrated at least 455-, 221-, 1590-, 21-, and 381-fold selectivity indices over other heparin-binding coagulation proteins including factors IIa, Xa, IXa, XIa, and FXIIIa, respectively. At the highest concentrations tested, the molecule also did not significantly inhibit other serine proteases of plasmin, trypsin, and chymotrypsin. Further supporting its selectivity, the molecule did not show heparin-like effects on clotting times of human plasma. The molecule also did not affect the proliferation of three cell lines at a concentration as high as 10 µM. Interestingly, the hexa-sulfonated molecule also inhibited cathepsin G with an IC50 value of 0.57 µM alluding to a dual anti-inflammatory action. A computational approach was exploited to identify putative binding site(s) for this novel class of HNE inhibitors. Overall, the reported hexa-sulfonated nonsaccharide heparin mimetic serves as a new platform to develop potent, selective, and noncompetitive inhibitors of HNE for therapeutic purposes.

10.
ACS Omega ; 6(14): 9334-9343, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869913

RESUMO

Pure antiestrogens, or selective estrogen receptor degraders (SERDs), have proven to be effective in treating breast cancer that has progressed on tamoxifen and/or aromatase inhibitors. However, the only FDA-approved pure antiestrogen, fulvestrant, is limited in efficacy by its low bioavailability. The search for orally bioavailable SERDs has continued for nearly as long as the clinical history of the injection-only fulvestrant. Oral SERDs that have been developed and tested in patients ranged from nonsteroidal ER binders containing an acrylic acid or amino side chain to bifunctional proteolysis-targeting chimera (PROTAC) pure ER degraders. Structural evolution in the development of oral SERD molecules has been closely associated with quantifiable ER-degrading potency, as seen in the structural comparison analysis of acrylic acid and basic amino side-chain-bearing SERDs. Failure to improve on fulvestrant in the clinical trials by numerous acidic SERDs and early basic SERDs is blamed on tolerability and/or insufficient efficacy, which will likely be overcome by the new-generation basic SERD molecules and PROTAC ER degraders with improved oral bioavailability, low toxicity, and superior efficacy of receptor degradation.

11.
ChemistryOpen ; 9(11): 1161-1172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33204588

RESUMO

The inhibition of factor XIa (FXIa) is a trending paradigm for the development of new generations of anticoagulants without a substantial risk of bleeding. In this report, we present the discovery of a benzyl tetra-phosphonate derivative as a potent and selective inhibitor of human FXIa. Biochemical screening of four phosphonate/phosphate derivatives has led to the identification of the molecule that inhibited human FXIa with an IC50 value of ∼7.4 µM and a submaximal efficacy of ∼68 %. The inhibitor was at least 14-fold more selective to FXIa over thrombin, factor IXa, factor Xa, and factor XIIIa. It also inhibited FXIa-mediated activation of factor IX and prolonged the activated partial thromboplastin time of human plasma. In Michaelis-Menten kinetics experiment, inhibitor 1 reduced the VMAX of FXIa hydrolysis of a chromogenic substrate without significantly affecting its KM suggesting an allosteric mechanism of inhibition. The inhibitor also disrupted the formation of FXIa - antithrombin complex and inhibited thrombin-mediated and factor XIIa-mediated formation of FXIa from its zymogen factor XI. Inhibitor 1 has been proposed to bind to or near the heparin/polyphosphate-binding site in the catalytic domain of FXIa. Overall, inhibitor 1 is the first benzyl tetraphosphonate small molecule that allosterically inhibits human FXIa, blocks its physiological function, and prevents its zymogen activation by other clotting factors under in vitro conditions. Thus, we put forward benzyl tetra-phosphonate 1 as a novel lead inhibitor of human FXIa to guide future efforts in the development of allosteric anticoagulants.


Assuntos
Anticoagulantes/farmacologia , Fator XIa/antagonistas & inibidores , Organofosfonatos/farmacologia , Sítio Alostérico , Anticoagulantes/metabolismo , Ensaios Enzimáticos , Fator XIa/química , Fator XIa/metabolismo , Humanos , Simulação de Acoplamento Molecular , Organofosfonatos/metabolismo , Tempo de Tromboplastina Parcial , Ligação Proteica , Tempo de Trombina
12.
Breast Cancer Res Treat ; 180(2): 359-368, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32030569

RESUMO

PURPOSE: Selective estrogen receptor degrader (SERD) has proven clinically effective in treating advanced or metastatic breast cancer since the approval of fulvestrant by FDA in 2002. Recent expansion of indications as a first line monotherapy and as combination therapy with CDK4/6 inhibitors further extends its clinical utility as an efficacious breast cancer endocrine regimen. However, the poor pharmacokinetic properties of fulvestrant and its injection-only administration route has driven continued efforts to develop orally bioavailability SERD that could potentially improve clinical response to SERD treatment. GLL398, a boron-modified GW5638 analog, showed superior oral bioavailability, while retaining both antiestrogenic activity and ER degrading efficacy at a potency level comparable to the more active metabolite of GW5638, GW7604. METHODS: Here we used molecular modeling, ER (Y537S) binding assay, MCF-7 Xenograft tumor, and patient-derived xenograft (PDX) tumor model to conduct further studies on the pharmacology and metabolism of GLL398. RESULTS: Consistent with GLL398's robust activities in breast cancer cells that either are tamoxifen resistant or express constitutively active, mutant ESR1 (Y537S), it was found to bind the mutant ERY537S with high affinity. Molecular modeling of the binding mode of GLL398 to ER also found its molecular interactions consistent with the experimentally determined high binding affinity towards WT ER and ERY537S. To test the in vivo efficacy of GLL398, mice bearing MCF-7-derived xenograft breast tumors and patient-derived xenograft tumors harboring ERY537S were treated with GLL398 which potently inhibited tumor growth in mice. CONCLUSIONS: This study demonstrates GLL398 is an oral SERD that has therapeutic efficacy in clinically relevant breast tumor models.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Proteólise , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Administração Oral , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Future Med Chem ; 11(21): 2765-2778, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702394

RESUMO

Aim: Histone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. Materials & methods: A series of HDAC inhibitors based on N-hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit. All target compounds were evaluated for their in vitro HDAC inhibitory activities and some selected compounds were tested for their antiproliferative activities. Conclusion: Among them, compound 7e showed an IC50 value of 11.5 nM in inhibiting the HDAC in a pan-HDAC assay, being the most active compound of the series.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Sulfonamidas/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores de Histona Desacetilases/síntese química , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
14.
Molecules ; 24(11)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174390

RESUMO

Pentamidine is bis-oxybenzamidine-based antiprotozoal drug. The parenteral use of pentamidine appears to affect the processes of blood coagulation and/or fibrinolysis resulting in rare but potentially life-threatening blood clot formation. Pentamidine was also found to cause disseminated intravascular coagulation syndrome. To investigate the potential underlying molecular mechanism(s) of pentamidine's effects on coagulation and fibrinolysis, we studied its effects on clotting times in normal and deficient human plasmas. Using normal plasma, pentamidine isethionate doubled the activated partial thromboplastin time at 27.5 µM, doubled the prothrombin time at 45.7 µM, and weakly doubled the thrombin time at 158.17 µM. Using plasmas deficient of factors VIIa, IXa, XIa, or XIIa, the concentrations to double the activated partial thromboplastin time were similar to that obtained using normal plasma. Pentamidine also inhibited plasmin-mediated clot lysis with half-maximal inhibitory concentration (IC50) value of ~3.6 µM. Chromogenic substrate hydrolysis assays indicated that pentamidine inhibits factor Xa and plasmin with IC50 values of 10.4 µM and 8.4 µM, respectively. Interestingly, it did not significantly inhibit thrombin, factor XIa, factor XIIIa, neutrophil elastase, or chymotrypsin at the highest concentrations tested. Michaelis-Menten kinetics and molecular modeling studies revealed that pentamidine inhibits factor Xa and plasmin in a competitive fashion. Overall, this study provides quantitative mechanistic insights into the in vitro effects of pentamidine isethionate on coagulation and fibrinolysis via the disruption of the proteolytic activity of factor Xa and plasmin.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fibrinólise/efeitos dos fármacos , Pentamidina/farmacologia , Trombose/tratamento farmacológico , Testes de Coagulação Sanguínea , Fator VIIa/genética , Fator XIIa/genética , Fator XIa/genética , Fator Xa/genética , Humanos , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Trombina/química , Trombina/genética , Tempo de Trombina , Trombose/sangue , Trombose/patologia
15.
Oncotarget ; 9(6): 6924-6937, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29467940

RESUMO

Advances in oral SERDs development so far have been confined to nonsteroidal molecules such as those containing a cinnamic acid moiety, which are in earlystage clinical evaluation. ZB716 was previously reported as an orally bioavailable SERD structurally analogous to fulvestrant. In this study, we examined the binding details of ZB716 to the estrogen receptor alpha (ERα) by computer modeling to reveal its interactions with the ligand binding domain as a steroidal molecule. We also found that ZB716 modulates ERα-coregulator interactions in nearly identical manner to fulvestrant. The ability of ZB716 to inhibit cell growth and downregulate ER expression in endocrine resistant, ERα mutant breast cancer cells was demonstrated. Moreover, in both the MCF-7 xenograft and a patient derived xenograft model, orally administered ZB716 showed superior efficacy in blocking tumor growth when compared to fulvestrant. Importantly, such enhanced efficacy of ZB716 was shown to be attributable to its markedly higher bioavailability, as evidenced in the final plasma and tumor tissue concentrations of ZB716 in mice where drug concentrations were found significantly higher than in the fulvestrant treatment group.

16.
PLoS One ; 12(7): e0180353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678816

RESUMO

Kif5A is a neuronally-enriched isoform of the Kinesin-1 family of cellular transport motors. 23 separate mutations in the motor domain of Kif5A have been identified in patients with the complicated form of hereditary spastic paraplegia (HSP). We performed in vitro assays on dimeric recombinant Kif5A with HSP-causing mutations in the Switch I domain, which participates in the coordination and hydrolysis of ATP by kinesin. We observed a variety of significantly reduced catalytic and mechanical activities as a result of each mutation, with the shared phenotype from each that motility was significantly reduced. Substitution of Mn2+ for Mg2+ in our reaction buffers provides a dose-dependent rescue in both the catalytic and ensemble mechanical properties of the S203C mutant. This work provides mechanistic insight into the cause of HSP in patients with these mutations and points to future experiments to further dissect the root cause of this disease.


Assuntos
Predisposição Genética para Doença/genética , Cinesinas/genética , Mutação , Paraplegia Espástica Hereditária/genética , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Humanos , Hidrólise , Cinesinas/química , Cinesinas/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Manganês/metabolismo , Manganês/farmacologia , Microtúbulos/química , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Paraplegia Espástica Hereditária/enzimologia , Imagem com Lapso de Tempo/métodos
17.
Pharmaceuticals (Basel) ; 9(2)2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27104545

RESUMO

A series of 15 alkanediamide-linked bisbenzamidines and related analogs was synthesized and tested in vitro against two Trypanosoma brucei (T.b.) subspecies: T.b. brucei and T.b. rhodesiense, Trypanosoma cruzi, Leishmania donovani and two Plasmodium falciparum subspecies: a chloroquine-sensitive strain (NF54) and a chloroquine-resistant strain (K1). The in vitro cytotoxicity was determined against rat myoblast cells (L6). Seven compounds (5, 6, 10, 11, 12, 14, 15) showed high potency against both strains of T. brucei and P. falciparum with the inhibitory concentrations for 50% (IC50) in the nanomolar range (IC50 = 1-96 nM). None of the tested derivatives was significantly active against T. cruzi or L. donovani. Three of the more potent compounds (5, 6, 11) were evaluated in vivo in mice infected with the drug-sensitive (Lab 110 EATRO and KETRI 2002) or drug-resistant (KETRI 2538 and KETRI 1992) clinical isolates of T. brucei. Compounds 5 and 6 were highly effective in curing mice infected with the drug-sensitive strains, including a drug-resistant strain KETRI 2538, but were ineffective against KETRI 1992. Thermal melting of DNA and molecular modeling studies indicate AT-rich DNA sequences as possible binding sites for these compounds. Several of the tested compounds are suitable leads for the development of improved antiparasitic agents.

18.
J Cell Mol Med ; 20(5): 909-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26861188

RESUMO

A number of natural phytochemicals have anti-photoaging properties that appear to be mediated through the inhibition of matrix metalloproteinase-1 (MMP-1) expression, but their direct target molecule(s) and mechanism(s) remain unclear. We investigated the effect of naringenin, a major flavonoid found in citrus, on UVB-induced MMP-1 expression and identified its direct target. The HaCaT human skin keratinocyte cell line and 3-dimensional (3-D) human skin equivalent cultures were treated or not treated with naringenin for 1 hr before exposure to UVB. The mechanism and target(s) of naringenin were analysed by kinase assay and multiplex molecular assays. Dorsal skins of hairless mice were exposed to UVB 3 times per week, with a dose of irradiation that was increased weekly by 1 minimal erythema dose (MED; 45 mJ/cm(2)) to 4 MED over 15 weeks. Wrinkle formation, water loss and water content were then assessed. Naringenin suppressed UVB-induced MMP-1 expression and AP-1 activity, and strongly suppressed UVB-induced phosphorylation of Fos-related antigen (FRA)-1 at Ser265. Importantly, UVB irradiation-induced FRA1 protein stability was reduced by treatment with naringenin, as well as with a mitogen-activated protein kinase (MEK) inhibitor. Naringenin significantly suppressed UVB-induced extracellular signal-regulated kinase 2 (ERK2) activity and subsequently attenuated UVB-induced phosphorylation of p90(RSK) by competitively binding with ATP. Constitutively active MEK (CA-MEK) increased FRA1 phosphorylation and expression and also induced MMP-1 expression, whereas dominant-negative ERK2 (DN-ERK2) had opposite effects. U0126, a MEK inhibitor, also decreased FRA1 phosphorylation and expression as well as MMP-1 expression. The photoaging data obtained from mice clearly demonstrated that naringenin significantly inhibited UVB-induced wrinkle formation, trans-epidermal water loss and MMP-13 expression. Naringenin exerts potent anti-photoaging effects by suppressing ERK2 activity and decreasing FRA1 stability, followed by down-regulation of AP-1 transactivation and MMP-1 expression.


Assuntos
Flavanonas/farmacologia , Queratinócitos/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Envelhecimento da Pele/efeitos dos fármacos , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Butadienos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Genes Reporter , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Luciferases/genética , Luciferases/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Camundongos Pelados , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Envelhecimento da Pele/genética , Envelhecimento da Pele/patologia , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Água/metabolismo
19.
Bioconjug Chem ; 26(8): 1606-12, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26191606

RESUMO

In order to tackle the issue of systemic toxicity in chemotherapy, there is a need to develop novel mechanisms for the activation of protein inhibitors using biomarkers overexpressed in cancer cells. Many current strategies focus on using cancer associated enzymes as a triggering agent for prodrugs. Herein, we detail an alternative approach that harnesses a microRNA (miR-21) that is overexpressed in cancers as the trigger that activates an inhibitor of human carbonic anhydrase-II (hCA-II). Specifically, we have developed a DNA-small molecule chimera (DC) composed of an hCA-II binding lithocholic acid amide (LAA) headgroup that can transition from a rigid duplex state (that does not bind appreciably to hCA) to a single-stranded conformation via a miR-21 trigger. The activated single-stranded DC can project the LAA headgroup into the hCA-II active site and is a robust hCA-II inhibitor (K(i) of 3.12 µM). This work may spur research into developing new classes of cancer selective protein inhibitors.


Assuntos
Ácidos e Sais Biliares/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , DNA/química , MicroRNAs/genética , Domínio Catalítico , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 23(15): 4489-4500, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26117647

RESUMO

The anti-protozoal drug pentamidine is active against opportunistic Pneumocystis pneumonia, but in addition has several other biological targets, including the NMDA receptor (NR). Here we describe the inhibitory potencies of 76 pentamidine analogs at 2 binding sites of the NR, the channel binding site labeled with [(3)H]MK-801 and the [(3)H]ifenprodil binding site. Most analogs acted weaker at the ifenprodil than at the channel site. The spermine-sensitivity of NR inhibition by the majority of the compounds was reminiscent of other long-chain dicationic NR blockers. The potency of the parent compound as NR blocker was increased by modifying the heteroatoms in the bridge connecting the 2 benzamidine moieties and also by integrating the bridge into a seven-membered ring. Docking of the 45 most spermine-sensitive bisbenzamidines to a recently described acidic interface between the N-terminal domains of GluN1 and GluN2B mediating polyamine stimulation of the NR revealed the domain contributed by GluN1 as the most relevant target.


Assuntos
Encéfalo/metabolismo , Maleato de Dizocilpina/química , Pentamidina/análogos & derivados , Piperidinas/química , Receptores de N-Metil-D-Aspartato/química , Animais , Sítios de Ligação , Maleato de Dizocilpina/metabolismo , Simulação de Acoplamento Molecular , Pentamidina/síntese química , Pentamidina/metabolismo , Piperazina , Piperazinas/química , Piperazinas/metabolismo , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Trítio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...