Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(26): 260801, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215374

RESUMO

Scalability presents a central platform challenge for the components of current quantum network implementations that can be addressed by microfabrication techniques. We demonstrate a high-bandwidth optical memory using a warm alkali atom ensemble in a microfabricated vapor cell compatible with wafer-scale fabrication. By applying an external tesla-order magnetic field, we explore a novel ground-state quantum memory scheme in the hyperfine Paschen-Back regime, where individual optical transitions can be addressed in a Doppler-broadened medium. Working on the ^{87}Rb D_{2} line, where deterministic quantum dot single-photon sources are available, we demonstrate bandwidth-matching with hundreds of megahertz broad light pulses keeping such sources in mind. For a storage time of 80 ns we measure an end-to-end efficiency of η_{e2e}^{80 ns}=3.12(17)%, corresponding to an internal efficiency of η_{int}^{0 ns}=24(3)%, while achieving a signal-to-noise ratio of SNR=7.9(8) with coherent pulses at the single-photon level.

2.
Opt Express ; 28(3): 3159-3170, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121989

RESUMO

We present an efficient and robust source of photons at the 87Rb D1-line (795 nm) with a narrow bandwidth of δ = 226(1) MHz. The source is based on non-degenerate, cavity-enhanced spontaneous parametric down-conversion in a monolithic optical parametric oscillator far below threshold. The setup allows for efficient coupling to single mode fibers. A heralding efficiency of ηheralded = 45(5) % is achieved, and the uncorrected number of detected photon pairs is 3.8 × 103/(s mW). For pair generation rates up to 5 × 105/s, the source emits heralded single photons with a normalized, heralded, second-order correlation function g c(2)<0.01. The source is intrinsically stable due to the monolithic configuration. Frequency drifts are on the order of δ/20 per hour without active feedback on the emission frequency. We achieved fine-tuning of the source frequency within a range of >2 GHz by applying mechanical strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...