Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2310204, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937984

RESUMO

The development of immune cell engagers (ICEs) can be limited by logistical and functional restrictions associated with fusion protein designs, thus limiting immune cell recruitment to solid tumors. Herein, a high affinity superantigen-based multivalent ICE is developed for simultaneous activation and recruitment of NK and T cells for tumor treatment. Yeast library-based directed evolution is adopted to identify superantigen variants possessing enhanced binding affinity to immunoreceptors expressed on human T cells and NK cells. High-affinity superantigens exhibiting improved immune-stimulatory activities are then incorporated into a superantigen-based tri-functional yeast-display-enhanced multivalent immune cell engager (STYMIE), which is functionalized with a nanobody, a Neo-2/15 cytokine, and an Fc domain for tumor targeting, immune stimulation, and prolonged circulation, respectively. Intravenous administration of STYMIE enhances NK and T cell recruitment into solid tumors, leading to enhanced inhibition in multiple tumor models. The study offers design principles for multifunctional ICEs.

2.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747577

RESUMO

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Assuntos
Escherichia coli , Ferro , Lipocalina-2 , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Camundongos , Ferro/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Enterobactina/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
3.
EMBO Mol Med ; 16(2): 416-428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225455

RESUMO

The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Oxaliplatina/uso terapêutico , Microambiente Tumoral , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Linfócitos T Citotóxicos , Imunoterapia/métodos , Linhagem Celular Tumoral
4.
ACS Nano ; 17(15): 14532-14544, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466994

RESUMO

Direct delivery of therapeutic genes is a promising approach for treating cancers and other diseases. The current human viral vectors, however, suffer from several drawbacks, including poor cell-type specificity and difficult large-scale production. The M13 phage provides an alternative vehicle for gene therapy with engineerable specificity, but the low transduction efficiency seriously limits its translational application. In this work, we discovered important factors of cells and phages that greatly influence the phage transduction. The up-regulation of PrimPol or the down-regulation of DMBT1 in cells significantly enhanced the phage transduction efficiency. Furthermore, we found that the phage transduction efficiency was inversely correlated with the phage size. By carefully reconstructing the phage origin with the gene of interest, we designed "TransPhage" with a minimal length and maximal transduction efficiency. We showed that TransPhage successfully transduced the human cells with an excellent efficiency (up to 95%) comparable to or superior to that of the adeno-associated virus vectors. Moreover, we showed that TransPhage's tropism was specific to the cells that overexpress the target antigen, whereas adeno-associated viruses (AAVs) promiscuously infected many cell types. Using TransPhage as a gene therapy vehicle, we invented an NK-cell-mediated immunotherapy in which a membrane-bound fragment crystallizable region was introduced to cancer cells. We showed in vitro that the cancer cells expressing the membrane-bound fragment crystallizable (Fc) were effectively killed by CD16+ NK cells through an antibody-dependent cell-mediated cytotoxicity (ADCC)-like mechanism. In the xenograft mouse model, the administration of TransPhage carrying the membrane-bound Fc gene greatly suppressed tumor growth.


Assuntos
Técnicas de Transferência de Genes , Neoplasias , Humanos , Camundongos , Animais , Vetores Genéticos , Bacteriófago M13 , Terapia Genética , Células Matadoras Naturais , Neoplasias/genética , Neoplasias/terapia , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Proteínas Supressoras de Tumor/genética , DNA Polimerase Dirigida por DNA , DNA Primase/genética , Enzimas Multifuncionais
5.
Haematologica ; 108(5): 1284-1299, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005562

RESUMO

A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.g., vascular endothelial growth factor receptor). However, whether SCUBE1 is involved in the pathological activation of FLT3 during MLL-r leukemogenesis remains unknown. Here we first show that SCUBE1 is a direct target of HOXA9/MEIS1 that is highly expressed on the MLL-r cell surface and predicts poor prognosis in de novo acute myeloid leukemia. We further demonstrate, by using a conditional knockout mouse model, that Scube1 is required for both the initiation and maintenance of MLL-AF9-induced leukemogenesis in vivo. Further proteomic, molecular and biochemical analyses revealed that the membrane-tethered SCUBE1 binds to the FLT3 ligand and the extracellular ligand-binding domains of FLT3, thus facilitating activation of the signal axis FLT3-LYN (a non-receptor tyrosine kinase) to initiate leukemic growth and survival signals. Importantly, targeting surface SCUBE1 by an anti-SCUBE1 monomethyl auristatin E antibody-drug conjugate led to significantly decreased cell viability specifically in MLL-r leukemia. Our study indicates a novel function of SCUBE1 in leukemia and unravels the molecular mechanism of SCUBE1 in MLL-r acute myeloid leukemia. Thus, SCUBE1 is a potential therapeutic target for treating leukemia caused by MLL rearrangements.


Assuntos
Fator de Crescimento Epidérmico , Leucemia Mieloide Aguda , Animais , Camundongos , Tirosina Quinase 3 Semelhante a fms , Leucemia Mieloide Aguda/patologia , Camundongos Knockout , Proteína Meis1 , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteômica , Receptores Proteína Tirosina Quinases , Fator A de Crescimento do Endotélio Vascular
6.
Mol Ther ; 30(7): 2522-2536, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440418

RESUMO

Tumor necrosis factor α (TNF-α) is upregulated in a chronic inflammatory environment, including tumors, and has been recognized as a pro-tumor factor in many cancers. Applying the traditional TNF-α antibodies that neutralize TNF-α activity, however, only exerts modest anti-tumor efficacy in clinical studies. Here, we develop an innovative approach to target TNF-α that is distinct from the neutralization mechanism. We employed phage display and yeast display to select non-neutralizing antibodies that can piggyback on TNF-α and co-internalize into cells through receptor ligation. When conjugating with toxins, the antibody exhibited cytotoxicity to cancer cells in a TNF-α-dependent manner. We further implemented the immunotoxin to an E. coli vehicle specially engineered for a high secretion level. In a syngeneic murine melanoma model, the bacteria stimulated TNF-α expression that synergized with the secreted immunotoxin and greatly inhibited tumor growth. The treatment also dramatically remodeled the tumor microenvironment in favor of several anti-tumor immune cells, including N1 neutrophils, M1 macrophages, and activated CD4+ and CD8+ lymphocytes. We anticipate that our new piggyback strategy is generalizable to targeting other soluble ligands and/or conjugates with different drugs for managing a diverse set of diseases.


Assuntos
Imunotoxinas , Melanoma , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Imunotoxinas/uso terapêutico , Melanoma/terapia , Camundongos , Microambiente Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
ACS Synth Biol ; 11(4): 1658-1668, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35324156

RESUMO

Two fundamentally different approaches are routinely used for protein engineering: user-defined mutagenesis and random mutagenesis, each with its own strengths and weaknesses. Here, we invent a unique mutagenesis protocol, which combines the advantages of user-defined mutagenesis and random mutagenesis. The new method, termed the reverse Kunkel method, allows the user to create random mutations at multiple specified regions in a one-pot reaction. We demonstrated the reverse Kunkel method by mimicking the somatic hypermutation in antibodies that introduces random mutations concentrated in complementarity-determining regions. Coupling with the phage display and yeast display selections, we successfully generated dramatically improved antibodies against a model protein and a neurotransmitter peptide in terms of affinity and immunostaining performance. The reverse Kunkel method is especially suitable for engineering proteins whose activities are determined by multiple variable regions, such as antibodies and adeno-associated virus capsids, or whose functional domains are composed of several discontinuous sequences, such as Cas9 and Cas12a.


Assuntos
Técnicas de Visualização da Superfície Celular , Engenharia de Proteínas , Anticorpos/genética , Mutagênese , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos
8.
ACS Synth Biol ; 10(8): 2087-2095, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34342970

RESUMO

Due to its highly immunogenic nature and the great engineerability, filamentous phage has shown promising antitumor activities in preclinical studies. Previous designs of antitumor phage mainly focused on tumor targeting using a cancer-specific moiety displayed on the minor capsid protein, pIII. In this work, we developed a new therapeutic platform of filamentous phage, in which the major capsid protein pVIII was utilized for displaying an antitumor cytokine. We showcased that a 16.1-kD cytokine GM-CSF could be efficiently presented on the M13 phage particle using the 8 + 8 type display system through a highly tolerable pVIII variant P8(1a). We verified that the GM-CSF phage was a potent activator for STAT5 signaling in murine macrophage. The GM-CSF phage significantly reduced the tumor size by more than 50% as compared to the unmodified phage in a murine colorectal cancer model. Immunological profiling of the tumor-infiltrating leukocytes revealed that an increase of CD4+ lymphocytes in the GM-CSF phage treatment group. Furthermore, the combined therapy of the GM-CSF phage and radiation greatly improved the therapeutic potency with a 100% survival rate and a 25% complete remission rate. We observed that the IFN-γ expression was dramatically up-regulated by the combined therapy in multiple types of tumor-infiltrating immune cells. Overall, we created a novel vehicle for cytokine therapy using the pVIII filamentous phage display. This new platform can be multiplexed with other phage engineering approaches, such as displaying targeting ligands on pIII or encapsulating therapeutic genes inside phage capsids, to create multifunctional nanoparticles for cancer therapy.


Assuntos
Bacteriófago M13 , Técnicas de Visualização da Superfície Celular , Neoplasias Colorretais , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
9.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483421

RESUMO

MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Linfócitos B/efeitos dos fármacos , Antígenos B7/genética , Células Epiteliais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Anticorpos Biespecíficos/biossíntese , Linfócitos B/imunologia , Linfócitos B/patologia , Antígenos B7/antagonistas & inibidores , Antígenos B7/imunologia , Engenharia Celular/métodos , Linhagem Celular Tumoral , Citarabina/farmacologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imunossupressores/farmacologia , Imunoterapia/métodos , Masculino , Terapia de Alvo Molecular/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Próstata/imunologia , Próstata/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Transfecção
10.
J Mol Med (Berl) ; 98(12): 1675-1687, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025105

RESUMO

Inflammatory bowel disease is a lifelong disorder that involves chronic inflammation in the small and large intestines. Current therapies, including aminosalicylates, corticosteroids, and anti-inflammatory biologics, can only alleviate the symptoms and often cause adverse effects with long-term usage. Engineered probiotics provide an alternative approach to treat inflammatory bowel disease in a self-renewable and local delivery fashion. In this work, we utilized a yeast probiotic Saccharomyces boulardii for this purpose. We developed a robust method to integrate recombinant genes into the Ty elements of S. boulardii. Stable yeast cell lines that secreted various anti-inflammatory proteins, including IL-10, TNFR1-ECD, alkaline phosphatase, and atrial natriuretic peptide (ANP), were successfully created and investigated for their efficacies to the DSS-induced colitis in mice through oral administration. While IL-10, TNFR1-ECD, and alkaline phosphatase did not show therapeutic effects, the ANP-secreting S. boulardii effectively ameliorated the mouse conditions as reflected by the improvements in body weight, disease activity index, and survival rate. A post-mortem examination revealed that the ANP-treated mice exhibited significant downregulations of TNF-α and IL-1ß and an upregulation of IL-6 in colon tissues. This observation is consistent with the previous reports showing that TNF-α and IL-1ß are responsible for initiating the pathogenesis, whereas IL-6 plays a protective role in colitis. Overall, we demonstrated that S. boulardii is a safe and robust vehicle for recombinant protein delivery in the gastrointestinal tract, and ANP is a potential anti-inflammatory drug for colitis treatment. KEY MESSAGES: Recombinant genes can be robustly integrated into the transposable elements of S. boulardii. Oral administration of S. boulardii secreting IL-10 or TNF-α inhibitor did not exert therapeutic effects for DSS-induced colitis in mice. Atrial natriuretic peptide-secreting S. boulardii effectively ameliorated the murine colitis as reflected by improved body weight, disease activity index, and survival rate. The ANP-treated mice exhibited decreased mRNA levels of TNF-α and IL-1ß and an increased mRNA level of IL-6 in colon tissues.


Assuntos
Anti-Inflamatórios/farmacologia , Fator Natriurético Atrial/farmacologia , Colite/tratamento farmacológico , Proteínas Fúngicas/farmacologia , Saccharomyces boulardii/química , Animais , Anti-Inflamatórios/química , Fator Natriurético Atrial/química , Colite/etiologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Proteínas Fúngicas/química , Engenharia Genética , Camundongos , Probióticos , Proteínas Recombinantes
11.
Biochemistry ; 59(44): 4285-4293, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33118810

RESUMO

Traditional antibody generation, using either phage display or animal immunization, relies on purified antigens. Many membrane proteins, such as G protein-coupled receptors, solute carriers, or ion channels, are important drug targets but very challenging for the formation of antibodies due to the difficulty of protein purification. Whole-cell panning is an alternative approach for generating antibodies without the need for antigen purification. However, it often suffers from background interference and therefore requires extensive screening with low success rates. Here, we develop a new phage selection method, dubbed affinity-tag-guided proximity selection (A-GPS), to efficiently isolate specific antibodies directly from the antigen-presenting cells. By engineering a genetically fused affinity tag for the target antigen, A-GPS confines the proximity labeling reaction near the target antigen and preferentially enriches the phage bound to the target antigen. Using surface-presented GFP on human cells as a model antigen, we demonstrated that A-GPS successfully enriched the antigen-specific clones in two rounds of selection. Among the 46 randomly picked clones, >95% of clones showed great affinity and specificity for GFP over the background of HEK293T surface proteins. One of the best clones expressed as a Fab fragment showed subnanomolar binding affinity for GFP. This clone was successfully applied to common biological applications, such as immunofluorescence and flow cytometry, reflecting the usefulness of A-GPS for generating commercial-grade antibodies.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Biblioteca de Peptídeos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Células HEK293 , Humanos
12.
Chem Asian J ; 15(22): 3861-3872, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32996252

RESUMO

Cancer cells have dramatically increased demands for energy as well as biosynthetic precursors to fuel their restless growth. Enhanced glutaminolysis is a hallmark of cancer metabolism which fulfills these needs. Two glutamine transporters, SLC1A5 and SLC38A2, have been previously reported to promote glutaminolysis in cancer with controversial perspectives. In this study, we harnessed the proximity labeling reaction to map the protein interactome using mass spectrometry-based proteomics and discovered a potential protein-protein interaction between SLC1A5 and SLC38A2. The SLC1A5/SLC38A2 interaction was further confirmed by bimolecular fluorescence complementation assay. We further investigated the metabolic influence of SLC1A5 and SLC38A2 overexpression in human cells, respectively, and found that only SLC38A2, but not SLC1A5, resulted in a cancer-like metabolic profile, where the intracellular concentrations of essential amino acids and lactate were significantly increased as quantified by nuclear magnetic resonance spectroscopy. Finally, we analyzed the 5-year survival rates in a large pan-cancer cohort and found that the SLC1A5hi /SLC38A2lo group did not relate to a poor survival rate, whereas the SLC1A5lo /SLC38A2hi group significantly aggravated the lethality. Intriguingly, the SLC1A5hi /SLC38A2hi group resulted in an even worse prognosis, suggesting a cooperative effect between SLC1A5 and SCL38A2. Our data suggest that SLC38A2 plays a dominant role in reprogramming the cancer-like metabolism and promoting the cancer progression, whereas SLC1A5 may augment this effect when co-overexpressed with SLC38A2. We propose a model to explain the relationship between SLC1A5, SLC38A2 and SCL7A5, and discuss their impact on glutaminolysis and mTOR signaling.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Glutamina/metabolismo , Células HEK293 , Humanos , Neoplasias/diagnóstico , Prognóstico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
J Proteome Res ; 19(3): 1109-1118, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31989825

RESUMO

Proximity labeling (PL) and chemical cross-linking (XL) mass spectrometry are two powerful methods to dissect protein-protein interactions (PPIs) in cells. Although PL typically captures neighboring proteins within a range of 10-20 nm of a single bait protein, chemical XL defines direct protein-protein contacts within 1 nm in a systemic manner. Here, we develop a new method, named PL/XL-MS, to harness the advantages of both PL and XL. PL/XL-MS can enrich a subcellular compartment by PL and simultaneously identify PPIs of multiple proteins from XL data. We applied PL/XL-MS to dissect the human nuclear envelope interactome. PL/XL-MS successfully enriched the nuclear envelope proteins and identified most known inner nuclear membrane proteins. By searching the cross-linked peptides, we successfully observed 109 literature-curated PPIs of 14 nuclear envelope proteins. Based on the homoprotein XL data, we experimentally characterized a nuclear matrix protein, Matrin-3, and observed its preferential localization near the nuclear envelope. PL/XL-MS is a simple and general method for studying protein networks in a subproteome of interest.


Assuntos
Membrana Nuclear , Proteômica , Reagentes de Ligações Cruzadas , Dissecação , Humanos , Espectrometria de Massas , Proteínas
14.
Sci Rep ; 9(1): 11457, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391525

RESUMO

Transgenic genome integration using non-viral vehicles is a promising approach for gene therapy. Previous studies reported that asparagine is a key regulator of cancer cell amino acid homeostasis, anabolic metabolism and cell proliferation. The depletion of asparagine would inhibit the growth of many cancer cells. In this study, we develop a nanoparticle delivery system to permanently integrate the asparaginase gene into the genome of human lung adenocarcinoma cells. The asparaginase plasmid and the Sleeping Beauty plasmid were co-transfected using amine-functionalized mesoporous nanoparticles into the human lung adenocarcinoma cells. The intracellular asparaginase expression led to the cell cytotoxicity for PC9 and A549 cells. In addition, the combination of the chemotherapy and the asparaginase gene therapy additively enhanced the cell cytotoxicity of PC9 and A549 cells to 69% and 63%, respectively. Finally, we showed that the stable cell clones were successfully made by puromycin selection. The doxycycline-induced expression of asparaginase caused almost complete cell death of PC9 and A549 asparaginase-integrated stable cells. This work demonstrates that silica-based nanoparticles have great potential in gene delivery for therapeutic purposes.


Assuntos
Antineoplásicos/farmacologia , Asparaginase/genética , Terapia Genética/métodos , Neoplasias/terapia , Transposases/genética , Células A549 , Antineoplásicos/uso terapêutico , Asparaginase/metabolismo , Asparagina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Terapia Combinada , Elementos de DNA Transponíveis/genética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Técnicas de Transferência de Genes , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Dióxido de Silício/química , Transfecção , Transposases/administração & dosagem
15.
Protein Sci ; 28(9): 1703-1712, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306516

RESUMO

APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium-independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi-pass membrane proteins. In this study, we found that a cysteine-free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2C32S to four multi-transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2C32S (73%), other three SLC proteins showed significantly better expression when fusing to APEX2C32S (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC-APEX2C32S cells. Enzyme kinetic experiments revealed that APEX2 and APEX2C32S have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2C32S is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Enzimas Multifuncionais/genética , Mutação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Carreadoras de Solutos/genética , Membrana Celular/metabolismo , Cisteína/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Enzimas Multifuncionais/metabolismo , Engenharia de Proteínas , Proteínas Carreadoras de Solutos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...