Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 161(4): 1885-902, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23424248

RESUMO

Strigolactones (SLs) are carotenoid-derived phytohormones with diverse roles. They are secreted from roots as attractants for arbuscular mycorrhizal fungi and have a wide range of endogenous functions, such as regulation of root and shoot system architecture. To date, six genes associated with SL synthesis and signaling have been molecularly identified using the shoot-branching mutants more axillary growth (max) of Arabidopsis (Arabidopsis thaliana) and dwarf (d) of rice (Oryza sativa). Here, we present a phylogenetic analysis of the MAX/D genes to clarify the relationships of each gene with its wider family and to allow the correlation of events in the evolution of the genes with the evolution of SL function. Our analysis suggests that the notion of a distinct SL pathway is inappropriate. Instead, there may be a diversity of SL-like compounds, the response to which requires a D14/D14-like protein. This ancestral system could have been refined toward distinct ligand-specific pathways channeled through MAX2, the most downstream known component of SL signaling. MAX2 is tightly conserved among land plants and is more diverged from its nearest sister clade than any other SL-related gene, suggesting a pivotal role in the evolution of SL signaling. By contrast, the evidence suggests much greater flexibility upstream of MAX2. The MAX1 gene is a particularly strong candidate for contributing to diversification of inputs upstream of MAX2. Our functional analysis of the MAX1 family demonstrates the early origin of its catalytic function and both redundancy and functional diversification associated with its duplication in angiosperm lineages.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Evolução Molecular , Lactonas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Sequência de Bases , Proteínas de Transporte/química , Sequência Conservada , Genes de Plantas/genética , Medicago/metabolismo , Dados de Sequência Molecular , Família Multigênica , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Plantas Geneticamente Modificadas , Análise de Componente Principal , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
2.
Curr Opin Plant Biol ; 10(5): 473-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17884716

RESUMO

Communication between distant organs is an essential feature of multicellular organisms. Plants are no exception to this rule and long-range signals are involved in the regulation of many aspects of organ growth and development. In this review, we use two specific examples to illustrate this point. The first is a novel upwardly mobile hormone involved in the regulation of shoot branching. The second is a root-derived hormonal signal that regulates leaf development.


Assuntos
Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas/metabolismo , Transdução de Sinais
3.
Nature ; 443(7110): 458-61, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17006513

RESUMO

Brassinosteroid and auxin decisively influence plant development, and overlapping transcriptional responses to these phytohormones suggest an interaction between the two pathways. However, whether this reflects direct feedback or merely parallel inputs on common targets is unclear. Here we show that in Arabidopsis roots, this interaction is mediated by BREVIS RADIX (BRX), which is required for optimal root growth. We demonstrate that the brx phenotype results from a root-specific deficiency of brassinosteroid and is due to reduced, BRX-dependent expression of a rate-limiting enzyme in brassinosteroid biosynthesis. Unexpectedly, this deficiency affects the root expression level of approximately 15% of all Arabidopsis genes, but the transcriptome profile can be restored to wild type by brassinosteroid treatment. Thus, proper brassinosteroid levels are required for the correct expression of many more genes than previously suspected. Moreover, embryonic or post-embryonic brassinosteroid application fully or partially, respectively, rescues the brx phenotype. Further, auxin-responsive gene expression is globally impaired in brx, demonstrating that brassinosteroid levels are rate-limiting for auxin-responsive transcription. BRX expression is strongly induced by auxin and mildly repressed by brassinolide, which means that BRX acts at the nexus of a feedback loop that maintains threshold brassinosteroid levels to permit optimal auxin action.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Brassinosteroides , Colestanóis/metabolismo , Colestanóis/farmacologia , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Ácidos Indolacéticos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Transdução de Sinais/efeitos dos fármacos , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacologia , Transcrição Gênica/efeitos dos fármacos
4.
Plant Physiol ; 140(4): 1306-16, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16514016

RESUMO

To date, the function of most genes in the Arabidopsis (Arabidopsis thaliana) genome is unknown. Here we present the first analysis of the novel, plant-specific BRX (BREVIS RADIX) gene family. BRX has been identified as a modulator of root growth through a naturally occurring loss-of-function allele. The biochemical function of BRX is enigmatic, however several domains in BRX are conserved in the proteins encoded by the related BRX-like (BRXL) genes. The similarity between Arabidopsis BRXL proteins within these domains ranges from 84% to 93%. Nevertheless, analysis of brx brx-like multiple mutants indicates that functional redundancy of BRXLs is limited. This results mainly from differences in protein activity, as demonstrated by assaying the propensity of constitutively expressed BRXL cDNAs to rescue the brx phenotype. Among the genes tested, only BRXL1 can replace BRX in this assay. Nevertheless, BRXL1 does not act redundantly with BRX in vivo, presumably because it is expressed at a much lower level than BRX. BRX and BRXL1 similarity is most pronounced in a characteristic tandem repeat domain, which we named BRX domain. One copy of this domain is also present in the PRAF (PH, RCC1, and FYVE)-like family proteins. The BRX domain mediates homotypic and heterotypic interactions within and between the BRX and PRAF protein families in yeast (Saccharomyces cerevisiae), and therefore likely represents a novel protein-protein interaction domain. The importance of this domain for BRX activity in planta is underscored by our finding that expression of the C-terminal fragment of BRX, comprising the two BRX domains, is largely sufficient to rescue the brx phenotype.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Alelos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Sequência de Bases , Sequência Conservada , Família Multigênica/genética , Família Multigênica/fisiologia , Mutação , Filogenia , Raízes de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
5.
Plant J ; 38(2): 332-47, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15078335

RESUMO

The role of the Arabidopsis transcription factor LONG HYPOCOTYL 5 (HY5) in promoting photomorphogenic development has been extensively characterized. Although the current model for HY5 action largely explains its role in this process, it does not adequately address the root phenotype observed in hy5 mutants. In our search for common mechanisms underlying all hy5 traits, we found that they are partly the result of an altered balance of signaling through the plant hormones auxin and cytokinin. hy5 mutants are resistant to cytokinin application, and double mutant analyses indicate that a decrease in auxin signaling moderates hy5 phenotypes. Microarray analyses and semiquantitative RT-PCR indicate that two negative regulators of auxin signaling, AUXIN RESISTANT 2 (AXR2)/INDOLE ACETIC ACID 7 (IAA7) and SOLITARY ROOT (SLR)/IAA14, are underexpressed in hy5 mutants. The promoters of these genes contain a putative HY5 binding site, and in line with this observation, HY5 can bind to the promoter of AXR2 in vitro. Increased AXR2 expression in a hy5 background partially rescues the elongated hypocotyl phenotype. In summary, it appears that auxin signaling is elevated in hy5 mutants because HY5 promotes the expression of negative regulators of auxin signaling, thereby linking hormone and light signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica , Citocininas/farmacologia , DNA de Plantas/genética , Genes de Plantas , Luz , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Fatores de Transcrição/genética
6.
Genes Dev ; 18(6): 700-14, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15031265

RESUMO

Mutant analysis has been tremendously successful in deciphering the genetics of plant development. However, less is known about the molecular basis of morphological variation within species, which is caused by naturally occurring alleles. In this study, we succeeded in isolating a novel regulator of root growth by exploiting natural genetic variation in the model plant Arabidopsis. Quantitative trait locus analysis of a cross between isogenized accessions revealed that a single locus is responsible for approximately 80% of the variance of the observed difference in root length. This gene, named BREVIS RADIX (BRX), controls the extent of cell proliferation and elongation in the growth zone of the root tip. We isolated BRX by positional cloning. BRX is a member of a small group of highly conserved genes, the BRX gene family, which is only found in multicellular plants. Analyses of Arabidopsis single and double mutants suggest that BRX is the only gene of this family with a role in root development. The BRX protein is nuclear localized and activates transcription in a heterologous yeast system, indicating that BRX family proteins represent a novel class of transcription factors. Thus, we have identified a novel regulatory factor controlling quantitative aspects of root growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...