Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(1)2021 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401566

RESUMO

Photosynthetic energy conversion and the resulting photoautotrophic growth of green algae can only occur in daylight, but DNA replication, nuclear and cellular divisions occur often during the night. With such a light/dark regime, an algal culture becomes synchronized. In this study, using synchronized cultures of the green alga Desmodesmus quadricauda, the dynamics of starch, lipid, polyphosphate, and guanine pools were investigated during the cell cycle by two independent methodologies; conventional biochemical analyzes of cell suspensions and confocal Raman microscopy of single algal cells. Raman microscopy reports not only on mean concentrations, but also on the distribution of pools within cells. This is more sensitive in detecting lipids than biochemical analysis, but both methods-as well as conventional fluorescence microscopy-were comparable in detecting polyphosphates. Discrepancies in the detection of starch by Raman microscopy are discussed. The power of Raman microscopy was proven to be particularly valuable in the detection of guanine, which was traceable by its unique vibrational signature. Guanine microcrystals occurred specifically at around the time of DNA replication and prior to nuclear division. Interestingly, guanine crystals co-localized with polyphosphates in the vicinity of nuclei around the time of nuclear division.


Assuntos
Ciclo Celular , Clorófitas/citologia , Guanina/análise , Lipídeos/análise , Microscopia , Polifosfatos/análise , Análise Espectral Raman , Amido/análise , Tamanho Celular , Parede Celular/química , Clorófitas/crescimento & desenvolvimento , Gotículas Lipídicas/metabolismo , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 117(51): 32722-32730, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33293415

RESUMO

Nitrogen (N) is an essential macronutrient for microalgae, influencing their productivity, composition, and growth dynamics. Despite the dramatic consequences of N starvation, many free-living and endosymbiotic microalgae thrive in N-poor and N-fluctuating environments, giving rise to questions about the existence and nature of their long-term N reserves. Our understanding of these processes requires a unequivocal identification of the N reserves in microalgal cells as well as their turnover kinetics and subcellular localization. Herein, we identified crystalline guanine as the enigmatic large-capacity and rapid-turnover N reserve of microalgae. The identification was unambiguously supported by confocal Raman, fluorescence, and analytical transmission electron microscopies as well as stable isotope labeling. We discovered that the storing capacity for crystalline guanine by the marine dinoflagellate Amphidiniumcarterae was sufficient to support N requirements for several new generations. We determined that N reserves were rapidly accumulated from guanine available in the environment as well as biosynthesized from various N-containing nutrients. Storage of exogenic N in the form of crystalline guanine was found broadly distributed across taxonomically distant groups of microalgae from diverse habitats, from freshwater and marine free-living forms to endosymbiotic microalgae of reef-building corals (Acropora millepora, Euphyllia paraancora). We propose that crystalline guanine is the elusive N depot that mitigates the negative consequences of episodic N shortage. Guanine (C5H5N5O) may act similarly to cyanophycin (C10H19N5O5) granules in cyanobacteria. Considering the phytoplankton nitrogen pool size and dynamics, guanine is proposed to be an important storage form participating in the global N cycle.


Assuntos
Guanina/metabolismo , Microalgas/química , Microalgas/metabolismo , Nitrogênio/metabolismo , Animais , Antozoários , Regiões Árticas , Cristalização , Dinoflagellida/química , Dinoflagellida/metabolismo , Ecossistema , Guanina/química , Cinética , Microscopia Eletrônica de Transmissão , Microscopia Óptica não Linear/métodos , Simbiose , Clima Tropical
3.
Biotechnol Adv ; 36(3): 784-797, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29355599

RESUMO

Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.


Assuntos
Biotecnologia/métodos , Desenho de Fármacos , Marcação por Isótopo/métodos , Isótopos/análise , Isótopos/química , Animais , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Deutério/administração & dosagem , Deutério/efeitos adversos , Deutério/análise , Espectroscopia de Ressonância Magnética , Mamíferos , Espectrometria de Massas/métodos , Plantas/efeitos dos fármacos , Análise Espectral Raman/métodos
4.
Anal Chem ; 89(22): 12006-12013, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29099580

RESUMO

Polyphosphates have occurred in living cells early in evolution and microalgae contain these important polymers in their cells. Progress in research of polyphosphate metabolism of these ecologically as well as biotechnologically important microorganisms is hampered by the lack of rapid quantification methods. Experiments with the green alga Chlorella vulgaris presented here compared polyphosphate extraction in water, methanol-chloroform, and phenol-chloroform followed by polyphosphate purification by binding to silica columns or ethanol precipitation. The phenol-chloroform extraction of C. vulgaris followed by ethanol precipitation of polyphosphate was shown to be superior to the other tested method variants. Recovery test of added polyphosphate standard to algal biomass showed that the method is accurate. Using this biochemical assay as a validated reference, we show that 2-dimensional, confocal Raman microscopy can serve as a linear proxy for polyphosphate in C. vulgaris with R2 up to 0.956. With this, polyphosphate quantification can be shortened by use of Raman microscopy from days to hours and, additionally, information about intracellular distribution of polyphosphate and heterogeneity among individual cells in algal culture can be obtained. This offers new insights into the dynamics and role of these polymers crucial for phosphorus uptake and storage. This analytical capability is of particular practical importance because algae aid phosphorus sequestration from wastewater and the thus enriched biomass may serve as organic fertilizer. Both these applications have a strong potential in a future sustainable, circular bioeconomy.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Chlorella vulgaris/química , Polifosfatos/análise , Polifosfatos/metabolismo , Saccharomyces cerevisiae/enzimologia , Análise Espectral Raman , Águas Residuárias/química
5.
Bioresour Technol ; 234: 140-149, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28319762

RESUMO

Growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1L) and compared to batch growth in sunlit modules (5-25L) of the commercial NOVAgreen photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags. The model was also used to predict maximum biomass productivity. The manipulative experiments and the model predictions were confronted with data from a production season of three large-scale photobioreactors: NOVAgreen (<36,000L), IGV (2,500-3,500L), and Phytolutions (28,000L). The analysis confirmed light-limitation in all three photobioreactors. An additional limitation of the biomass productivity was caused by the nitrogen starvation that was used to induce lipid accumulation. Reduction of shading and separation of biomass and lipid production are proposed for future optimization.


Assuntos
Biomassa , Fotobiorreatores , Chlorella vulgaris , Clima , Microalgas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...