Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6914, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935697

RESUMO

The glaciers of North Greenland are hosting enough ice to raise sea level by 2.1 m, and have long considered to be stable. This part of Greenland is buttressed by the last remaining ice shelves of the ice sheet. Here, we show that since 1978, ice shelves in North Greenland have lost more than 35% of their total volume, three of them collapsing completely. For the floating ice shelves that remain we observe a widespread increase in ice shelf mass losses, that are dominated by enhanced basal melting rates. Between 2000 and 2020, there was a widespread increase in basal melt rates that closely follows a rise in the ocean temperature. These glaciers are showing a direct dynamical response to ice shelf changes with retreating grounding lines and increased ice discharge. These results suggest that, under future projections of ocean thermal forcing, basal melting rates will continue to rise or remain at high level, which may have dramatic consequences for the stability of Greenlandic glaciers.

2.
Geophys Res Lett ; 48(8): e2020GL091311, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34219840

RESUMO

Supraglacial debris affects glacier mass balance as a thin layer enhances surface melting, while a thick layer reduces it. While many glaciers are debris-covered, global glacier models do not account for debris because its thickness is unknown. We provide the first globally distributed debris thickness estimates using a novel approach combining sub-debris melt and surface temperature inversion methods. Results are evaluated against observations from 22 glaciers. We find the median global debris thickness is ∼0.15 ± 0.06 m. In all regions, the net effect of accounting for debris is a reduction in sub-debris melt, on average, by 37%, which can impact regional mass balance by up to 0.40 m water equivalent (w.e.) yr-1. We also find recent observations of similar thinning rates over debris-covered and clean ice glacier tongues is primarily due to differences in ice dynamics. Our results demonstrate the importance of accounting for debris in glacier modeling efforts.

3.
Sci Adv ; 5(1): eaau3433, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30729155

RESUMO

The glaciers flowing into the Amundsen Sea Embayment, West Antarctica, have undergone acceleration and grounding line retreat over the past few decades that may yield an irreversible mass loss. Using a constellation of satellites, we detect the evolution of ice velocity, ice thinning, and grounding line retreat of Thwaites Glacier from 1992 to 2017. The results reveal a complex pattern of retreat and ice melt, with sectors retreating at 0.8 km/year and floating ice melting at 200 m/year, while others retreat at 0.3 km/year with ice melting 10 times slower. We interpret the results in terms of buoyancy/slope-driven seawater intrusion along preferential channels at tidal frequencies leading to more efficient melt in newly formed cavities. Such complexities in ice-ocean interaction are not currently represented in coupled ice sheet/ocean models.

4.
Geophys Res Lett ; 45(6): 2688-2696, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29937604

RESUMO

We employ National Aeronautics and Space Administration (NASA)'s Operation IceBridge high-resolution airborne gravity from 2016, NASA's Ocean Melting Greenland bathymetry from 2015, ice thickness from Operation IceBridge from 2010 to 2015, and BedMachine v3 to analyze 20 major southeast Greenland glaciers. The results reveal glacial fjords several hundreds of meters deeper than previously thought; the full extent of the marine-based portions of the glaciers; deep troughs enabling warm, salty Atlantic Water (AW) to reach the glacier fronts and melt them from below; and few shallow sills that limit the access of AW. The new oceanographic and topographic data help to fully resolve the complex pattern of historical ice front positions from the 1930s to 2017: glaciers exposed to AW and resting on retrograde beds have retreated rapidly, while glaciers perched on shallow sills or standing in colder waters or with major sills in the fjords have remained stable.

5.
Geophys Res Lett ; 45(7): 3156-3163, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29937605

RESUMO

The evolution of Greenland glaciers in a warming climate depends on their depth below sea level, flow speed, surface melt, and ocean-induced undercutting at the calving front. We present an innovative mapping of bed topography in the frontal regions of Sermeq Avannarleq and Kujalleq, two major glaciers flowing into the ice-choked Torssukatak Fjord, central west Greenland. The mapping combines a mass conservation algorithm inland, multibeam echo sounding data in the fjord, and high-resolution airborne gravity data at the ice-ocean transition where other approaches have traditionally failed. We obtain a reliable, precision (±40 m) solution for bed topography across the ice-ocean boundary. The results reveal a 700 m deep fjord that abruptly ends on a 100-300 m deep sill along the calving fronts. The shallow sills explain the presence of stranded icebergs, the resilience of the glaciers to ocean-induced undercutting by warm Atlantic water, and their remarkable stability over the past century.

6.
Geophys Res Lett ; 44(21): 11051-11061, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29263561

RESUMO

Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.

7.
Science ; 350(6266): 1357-61, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26563135

RESUMO

After 8 years of decay of its ice shelf, Zachariæ Isstrøm, a major glacier of northeast Greenland that holds a 0.5-meter sea-level rise equivalent, entered a phase of accelerated retreat in fall 2012. The acceleration rate of its ice velocity tripled, melting of its residual ice shelf and thinning of its grounded portion doubled, and calving is now occurring at its grounding line. Warmer air and ocean temperatures have caused the glacier to detach from a stabilizing sill and retreat rapidly along a downward-sloping, marine-based bed. Its equal-ice-volume neighbor, Nioghalvfjerdsfjorden, is also melting rapidly but retreating slowly along an upward-sloping bed. The destabilization of this marine-based sector will increase sea-level rise from the Greenland Ice Sheet for decades to come.

8.
Science ; 341(6143): 266-70, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23765278

RESUMO

We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

9.
Science ; 333(6048): 1427-30, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21852457

RESUMO

We present a reference, comprehensive, high-resolution, digital mosaic of ice motion in Antarctica assembled from multiple satellite interferometric synthetic-aperture radar data acquired during the International Polar Year 2007 to 2009. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland over the entire continent. This view of ice sheet motion emphasizes the importance of basal-slip-dominated tributary flow over deformation-dominated ice sheet flow, redefines our understanding of ice sheet dynamics, and has far-reaching implications for the reconstruction and prediction of ice sheet evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...