Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6143, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903790

RESUMO

Both solar wind and ionospheric sources contribute to the magnetotail plasma sheet, but how their contribution changes during a geomagnetic storm is an open question. The source is critical because the plasma sheet properties control the enhancement and decay rate of the ring current, the main cause of the geomagnetic field perturbations that define a geomagnetic storm. Here we use the solar wind composition to track the source and show that the plasma sheet source changes from predominantly solar wind to predominantly ionospheric as a storm develops. Additionally, we find that the ionospheric plasma during the storm main phase is initially dominated by singly ionized hydrogen (H+), likely from the polar wind, a low energy outflow from the polar cap, and then transitions to the accelerated outflow from the dayside and nightside auroral regions, identified by singly ionized oxygen (O+). These results reveal how the access to the magnetotail of the different sources can change quickly, impacting the storm development.

2.
Geophys Res Lett ; 48(3)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34054157

RESUMO

Mesoscale structures in Earth's magnetotail are a primary feature of particle transport to the inner magnetosphere during storms and substorms. We demonstrate that such structures can be observed in energetic neutral atom (ENA) data which can provide remote, global images of the magnetosphere. In particular, we present localized regions of increased ion temperatures that appear in equatorial ion temperature maps calculated from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) ENA data. These regions are associated with a dipolarization front with bursty ion flows measured by Magnetospheric MultiScale (MMS) and are concurrent with substorm features observed in field aligned currents (FAC) from Active Magnetosphere and Planetary Electrodynamics Response Experiment measurements. We conduct a magnetohydrodynamics simulation of the same event and show simulated ion temperatures, ion flows, and FACs that agree with the measurements. However, the observed plasma heating is less intense in the simulated results than in the TWINS and MMS data, indicating that some heating processes may be missing from the model.

3.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30442767

RESUMO

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...