Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Placenta ; 21(7): 661-9, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10985969

RESUMO

The human placental syncytiotrophoblast is the main site of exchange of nutrients and minerals between the mother and her fetus. In order to characterize the placental transport of some fatty acids, we studied the incorporation of arachidonic acid, a fetal primordial fatty acid, in purified bipolar syncytiotrophoblast brush border (BBM) and basal plasma membranes (BPM) from human placenta. The basal arachidonic acid incorporation in BBM and BPM was time dependent and reached maximal values of 0.75+/-0.10 and 0.48+/-0.18 pmol/mg protein, respectively, after 2.5 min. The presence of adenosine triphosphate (ATP) (3 m m) increases significantly the maximal incorporation of arachidonic acid by sixfold (4.75+/-0.35 pmol/mg) and ninefold (4.40+/-0.84 pmol/mg) in BBM and BPM, respectively. Moreover, an increase in the arachidonic acid incorporation was also obtained in the presence of sodium where the values achieved 7.68+/-0.98 (10x) and 6.53 pmol/mg (13.6x) for BBM and BPM, respectively. We also showed that the combination of both Na(+)and ATP increases significantly the maximal incorporation of arachidonic acid in BPM to 7.89+/-0.15 pmol/mg protein, while in BBM it did not modify its incorporation (8.18+/-0.25 pmol/mg protein), as compared to the presence of sodium alone. Our results demonstrate that arachidonic acid is incorporated by both placental syncytiotrophoblast membranes, and is ATP and sodium-linked. However, different mechanisms seem to be involved in this fatty acid incorporation through BBM and BPM, since the presence of Na(+)or ATP increased it, while the association of these two elements increased it only in BPM. We also demonstrated by osmolarity experiments that both membranes bind arachidonic acid, potentially involving one or more fatty acids binding proteins.


Assuntos
Trifosfato de Adenosina/farmacologia , Ácido Araquidônico/metabolismo , Membrana Celular/metabolismo , Microvilosidades/metabolismo , Sódio/farmacologia , Trofoblastos/ultraestrutura , Fracionamento Celular , Feminino , Humanos , Concentração Osmolar , Gravidez , Sacarose/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...