Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 6769, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25864384

RESUMO

CDK1 is the only essential cell cycle CDK in human cells and is required for successful completion of M-phase. It is the founding member of the CDK family and is conserved across all eukaryotes. Here we report the crystal structures of complexes of CDK1-Cks1 and CDK1-cyclin B-Cks2. These structures confirm the conserved nature of the inactive monomeric CDK fold and its ability to be remodelled by cyclin binding. Relative to CDK2-cyclin A, CDK1-cyclin B is less thermally stable, has a smaller interfacial surface, is more susceptible to activation segment dephosphorylation and shows differences in the substrate sequence features that determine activity. Both CDK1 and CDK2 are potential cancer targets for which selective compounds are required. We also describe the first structure of CDK1 bound to a potent ATP-competitive inhibitor and identify aspects of CDK1 structure and plasticity that might be exploited to develop CDK1-selective inhibitors.


Assuntos
Quinases relacionadas a CDC2 e CDC28/química , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Ciclina B/química , Quinases Ciclina-Dependentes/química , Proteínas Recombinantes de Fusão/química , Trifosfato de Adenosina/química , Animais , Ligação Competitiva , Proteína Quinase CDC2 , Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Transporte/genética , Bovinos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Cristalografia por Raios X , Ciclina A/química , Ciclina A/genética , Ciclina B/genética , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Inibidores de Proteínas Quinases/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 108(20): 8228-32, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21540331

RESUMO

The ß(1)-adrenergic receptor (ß(1)AR) is a G-protein-coupled receptor whose inactive state structure was determined using a thermostabilized mutant (ß(1)AR-M23). However, it was not thought to be in a fully inactivated state because there was no salt bridge between Arg139 and Glu285 linking the cytoplasmic ends of transmembrane helices 3 and 6 (the R(3.50) - D/E(6.30) "ionic lock"). Here we compare eight new structures of ß(1)AR-M23, determined from crystallographically independent molecules in four different crystals with three different antagonists bound. These structures are all in the inactive R state and show clear electron density for cytoplasmic loop 3 linking transmembrane helices 5 and 6 that had not been seen previously. Despite significantly different crystal packing interactions, there are only two distinct conformations of the cytoplasmic end of helix 6, bent and straight. In the bent conformation, the Arg139-Glu285 salt bridge is present, as in the crystal structure of dark-state rhodopsin. The straight conformation, observed in previously solved structures of ß-receptors, results in the ends of helices 3 and 6 being too far apart for the ionic lock to form. In the bent conformation, the R(3.50)-E(6.30) distance is significantly longer than in rhodopsin, suggesting that the interaction is also weaker, which could explain the high basal activity in ß(1)AR compared to rhodopsin. Many mutations that increase the constitutive activity of G-protein-coupled receptors are found in the bent region at the cytoplasmic end of helix 6, supporting the idea that this region plays an important role in receptor activation.


Assuntos
Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Cristalografia por Raios X , Humanos , Proteínas Mutantes , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta 1/metabolismo , Receptores Acoplados a Proteínas G/química
3.
Nature ; 469(7329): 241-4, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21228877

RESUMO

ß-adrenergic receptors (ßARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit ßARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) ß(1)-adrenergic receptor (ß(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonismo Parcial de Drogas , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Albuterol/química , Albuterol/metabolismo , Albuterol/farmacologia , Anfetaminas/química , Anfetaminas/metabolismo , Anfetaminas/farmacologia , Animais , Sítios de Ligação , Catecolaminas/metabolismo , Cristalografia por Raios X , Dobutamina/química , Dobutamina/metabolismo , Dobutamina/farmacologia , Desenho de Fármacos , Ligação de Hidrogênio , Hidroxiquinolinas/química , Hidroxiquinolinas/metabolismo , Hidroxiquinolinas/farmacologia , Isoproterenol/química , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Ligantes , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Perus
4.
Nature ; 454(7203): 486-91, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18594507

RESUMO

G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A resolution crystal structure of a beta(1)-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol. The modified turkey (Meleagris gallopavo) receptor was selected to be in its antagonist conformation and its thermostability improved by earlier limited mutagenesis. The ligand-binding pocket comprises 15 side chains from amino acid residues in 4 transmembrane alpha-helices and extracellular loop 2. This loop defines the entrance of the ligand-binding pocket and is stabilized by two disulphide bonds and a sodium ion. Binding of cyanopindolol to the beta(1)-adrenergic receptor and binding of carazolol to the beta(2)-adrenergic receptor involve similar interactions. A short well-defined helix in cytoplasmic loop 2, not observed in either rhodopsin or the beta(2)-adrenergic receptor, directly interacts by means of a tyrosine with the highly conserved DRY motif at the end of helix 3 that is essential for receptor activation.


Assuntos
Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1 , Antagonistas de Receptores Adrenérgicos beta 1 , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Pindolol/análogos & derivados , Pindolol/química , Pindolol/metabolismo , Propanolaminas/química , Propanolaminas/metabolismo , Conformação Proteica , Receptores Adrenérgicos beta 1/metabolismo , Termodinâmica , Perus
5.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 2): 158-66, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18219115

RESUMO

For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 microm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 x 10(10) photons s(-1) microm(-2) at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 A resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 microm(3) crystal volume, corresponding to about 2 x 10(8) unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered.


Assuntos
Proteínas/química , Síncrotrons , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Modelos Moleculares , Estrutura Secundária de Proteína , Xilosidases/química
6.
Nature ; 440(7080): 115-9, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452929

RESUMO

The microbial phototaxis receptor sensory rhodopsin II (NpSRII, also named phoborhodopsin) mediates the photophobic response of the haloarchaeon Natronomonas pharaonis by modulating the swimming behaviour of the bacterium. After excitation by blue-green light NpSRII triggers, by means of a tightly bound transducer protein (NpHtrII), a signal transduction chain homologous with the two-component system of eubacterial chemotaxis. Two molecules of NpSRII and two molecules of NpHtrII form a 2:2 complex in membranes as shown by electron paramagnetic resonance and X-ray structure analysis. Here we present X-ray structures of the photocycle intermediates K and late M (M2) explaining the evolution of the signal in the receptor after retinal isomerization and the transfer of the signal to the transducer in the complex. The formation of late M has been correlated with the formation of the signalling state. The observed structural rearrangements allow us to propose the following mechanism for the light-induced activation of the signalling complex. On excitation by light, retinal isomerization leads in the K state to a rearrangement of a water cluster that partly disconnects two helices of the receptor. In the transition to late M the changes in the hydrogen bond network proceed further. Thus, in late M state an altered tertiary structure establishes the signalling state of the receptor. The transducer responds to the activation of the receptor by a clockwise rotation of about 15 degrees of helix TM2 and a displacement of this helix by 0.9 A at the cytoplasmic surface.


Assuntos
Halobacteriaceae/metabolismo , Halorrodopsinas/química , Halorrodopsinas/metabolismo , Transdução de Sinal Luminoso/fisiologia , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Evolução Biológica , Cristalografia por Raios X , Citoplasma/metabolismo , Halobacteriaceae/química , Halobacteriaceae/citologia , Ligação de Hidrogênio , Isomerismo , Modelos Moleculares , Conformação Proteica
7.
Biophys J ; 87(5): 3608-13, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15339801

RESUMO

Hexagonal crystals of the membrane protein bacteriorhodopsin of space group P6 3 grown in lipidic cubic phase are twinned hemihedrally. It was shown that slow changes of salt concentration in the mother liquor lead to a split of crystals so that the split parts preserved high diffraction quality. Analysis of diffraction data from split crystals by Yeates statistic and Britton plot showed that the split parts are free of twinning. It is concluded that crystals of bacteriorhodopsin are composed of several macroscopic twinning domains with sizes comparable to the original crystal. The appearance of twinning domains during crystal growth and the mechanism of splitting are discussed.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/ultraestrutura , Cristalização/métodos , Cristalografia/métodos , Modelos Químicos , Modelos Moleculares , Bacteriorodopsinas/análise , Sítios de Ligação , Simulação por Computador , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica
8.
Nature ; 419(6906): 484-7, 2002 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12368857

RESUMO

Microbial rhodopsins, which constitute a family of seven-helix membrane proteins with retinal as a prosthetic group, are distributed throughout the Bacteria, Archaea and Eukaryota. This family of photoactive proteins uses a common structural design for two distinct functions: light-driven ion transport and phototaxis. The sensors activate a signal transduction chain similar to that of the two-component system of eubacterial chemotaxis. The link between the photoreceptor and the following cytoplasmic signal cascade is formed by a transducer molecule that binds tightly and specifically to its cognate receptor by means of two transmembrane helices (TM1 and TM2). It is thought that light excitation of sensory rhodopsin II from Natronobacterium pharaonis (SRII) in complex with its transducer (HtrII) induces an outward movement of its helix F (ref. 6), which in turn triggers a rotation of TM2 (ref. 7). It is unclear how this TM2 transition is converted into a cellular signal. Here we present the X-ray structure of the complex between N. pharaonis SRII and the receptor-binding domain of HtrII at 1.94 A resolution, which provides an atomic picture of the first signal transduction step. Our results provide evidence for a common mechanism for this process in phototaxis and chemotaxis.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Membrana Celular/metabolismo , Halorrodopsinas , Natronobacterium/metabolismo , Rodopsinas Sensoriais , Transdução de Sinais , Proteínas Arqueais/genética , Carotenoides/genética , Cristalografia por Raios X , Escherichia coli , Modelos Moleculares , Natronobacterium/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...