Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4319-4323, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892177

RESUMO

Drug-Eluting Stents (DES) are commonly used in Coronary angioplasty procedures to reduce the phenomenon of restenosis. Numerical simulations are proven to be a useful tool to the Bioengineering community in computing the mechanical performance of stents. BioCoStent is a research project aiming to develop a DES with retinoic acid (RA) coating, in the frame of which FEAC is responsible for the in silico numerical simulation of the coating's degradation in terms of Finite Element Analysis (FEA). The coatings under study are poly(lactic-co-glycolic acid) (PLGA) and polylactide (PLA). The FEA is based on the Continuum Damage Mechanics (CDM) theory and considers a mechanistic model for polymer bulk degradation of the coatings. The degradation algorithm is implemented on the NX Nastran solver through a user-defined material UMAT subroutine. This paper describes the developed numerical model to compute the degradation of biodegradable coatings on DES. The transient numerical model provides useful insight into the critical areas with regards to the scalar damage of the coatings. The FEA results present a complete degradation of polymers after several weeks.


Assuntos
Stents Farmacológicos , Polímeros , Simulação por Computador , Análise de Elementos Finitos , Stents
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4324-4328, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892178

RESUMO

Drug-Eluting Stents (DES) are commonly used in coronary angioplasty operations as a solution against artery stenosis and restenosis. Computational Bioengineering allows for the in-silico analysis of their performance. The scope of this work is to develop a DES Digital Twin, focusing on the mechanical integrity of its biodegradable coating throughout the operational lifecycle. The implementation leverages the Finite Element Method (FEM) to compute the developed mechanical stress field on the DES during the inflation/deflation stage, followed by the degradation of the polymer-based coating. The simulation of the degradation process is based on a Continuum Damage Mechanics (CDM) model that considers bulk degradation. The CDM algorithm is implemented on the NX Nastran solver through a user-defined material (UMAT) subroutine. For benchmarking purposes and to compare with the baseline design of the BioCoStent project, this conceptual study implements an alternative stent design, to study the effect of the geometry on the developed stresses. Additionally, the effect of the degradation rate on the polymer-based coating's lifecycle is studied via sensitivity analysis.


Assuntos
Angioplastia Coronária com Balão , Stents Farmacológicos , Polímeros , Stents , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...