Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 19(8): 4623-4631, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913758

RESUMO

Synthesis of 4,4'-((phenyl)methylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives was successively carried out using Cu doped ZnO nanomaterials. The nanocrystalline Cu-ZnO was obtained by decomposing as-synthesized copper-zinc oxalate intermediate at 520 °C. The prepared Cu-ZnO nanostructured catalyst was characterized with FTIR, X-ray diffraction, field emission scanning electron microscope and electron diffraction techniques. XRD analysis indicates the formation of highly crystalline hexagonal phase of ZnO along with the presence of monoclinic CuO. FESEM photographs shows the existence of plate like structures made up of small spherical shaped particles having size in the range of 30-50 nm. As-synthesized Cu-ZnO was used as heterogeneous catalyst for one pot synthesis of 4,4'-((phenyl)methylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives using phenyl hydrazine, ethyl acetoacetate and aromatic aldehydes. The 3-methyl-1-phenyl-1H-pyrazol-5-ol was obtained as in-situ precursor to the series of bis-pyrazolone derivatives. The progress of reaction was monitored by thin layer chromatography. The obtained organic product was further characterized and confirmed by FT-IR, 1H-NMR, 13C-NMR and HRMS spectroscopic techniques. The Cu-ZnO catalyst confers upto 96% yield of pyrazolone derivatives in ethanol solvent at refluxing condition. The Cu-ZnO catalyst was used successfully up to 5 cycles without much loss of catalytic activity. Overall, the use of environmental friendly Cu-ZnO nano-structures as a heterogeneous catalyst shows higher yield and lower reaction time towards the synthesis of bispyrazolone derivatives by Tandem Knoevenagel/Michael reaction.

2.
RSC Adv ; 9(56): 32735-32743, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529759

RESUMO

One-pot green synthesis of propargylamines using ZnCl2 loaded TiO2 nanomaterial under solvent-free conditions has been effectively accomplished. The aromatic aldehydes, amines, and phenylacetylene were reacted at 100 °C in the presence of the resultant catalyst to form propargylamines. The nanocrystalline TiO2 was initially synthesized by a sol-gel method from titanium(iv) isopropoxide (TTIP) and further subjected to ZnCl2 loading by a wet impregnation method. X-ray diffraction (XRD) patterns revealed the formation of crystalline anatase phase TiO2. Field emission scanning electron microscopy (FESEM) showed the formation of agglomerated spheroid shaped particles having a size in the range of 25-45 nm. Transmission electron microscopy (TEM) validates cubical faceted and nanospheroid-like morphological features with clear faceted edges for the pure TiO2 sample. Surface loading of ZnCl2 on spheroid TiO2 nanoparticles is evident in the case of the ZnCl2 loaded TiO2 sample. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti4+ and Zn2+ species in the ZnCl2 loaded TiO2 catalyst. Energy-dispersive X-ray (EDS) spectroscopy also confirmed the existence of Ti, O, Zn and Cl elements in the nanostructured catalyst. 15% ZnCl2 loaded TiO2 afforded the highest 97% yield for 3-(1-morpholino-3-phenylprop-2-ynyl)phenol, 2-(1-morpholino-3-phenylprop-2-ynyl)phenol and 4-(1,3-diphenylprop-2-ynyl)morpholine under solvent-free and aerobic conditions. The proposed nanostructure-based heterogeneous catalytic reaction protocol is sustainable, environment-friendly and offers economic viability in terms of recyclability of the catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...