Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
5.
Materials (Basel) ; 14(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443225

RESUMO

Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.

6.
Front Microbiol ; 11: 1963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983007

RESUMO

An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin from Lactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterized in silico via molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter, in vitro results against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further, in vivo studies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin Resistant Staphylococcus aureus (VRSA) infection to its healthy condition. Thereafter, in vitro study with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics.

7.
Biotechnol Adv ; 43: 107571, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505655

RESUMO

Antibiotic resistance is rising at a pace that is difficult to cope with; circumvention of this issue requires fast and efficient alternatives to conventional antibiotics. Algae inhabit a wide span of ecosystems, which contributes to their ability to synthesize diverse classes of highly active biogenic metabolites. Here, for the first time, we reviewed all possible algal metabolites with broad spectra antibacterial activity against pathogenic bacteria, including antibiotic-resistant strains, and categorized different metabolites of both freshwater and marine algae, linking them on the basis of their target sites and mechanistic actions along with their probable nanoconjugates. Algae can be considered a boon for novel drug discovery in the era of antibiotic resistance, as various algal primary and secondary metabolites possess potential antibacterial properties. The diversity of these metabolites from indigenous sources provides a promising gateway enabling researchers and pharmaceutical companies to develop novel nontoxic, cost-effective and highly efficient antibacterial medicines.


Assuntos
Antibacterianos , Ecossistema , Antibacterianos/farmacologia , Bactérias , Resistência Microbiana a Medicamentos , Plantas
8.
Environ Res ; 188: 109320, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32540568

RESUMO

Recently, the interest is increasing to find alternatives to replace the usage of antibiotics since their massive and improper usage enhance the antibiotic resistance in human pathogens. In this study, for the first time we showed that the soil proteins have very high antibacterial activity (98% of growth inhibition) against methicillin resistant Staphylococcus aureus (MRSA), one of the most threatening human pathogens. We found that the protein extract (C3) from the forest with past intensive management showed higher antibacterial activity than that of unmanaged forest. The MIC and IC50 were found to be 30 and 15.0 µg protein g-1 dry soil respectively. C3 was found to kill the bacteria by cell wall disruption and genotoxicity which was confirmed by optical and fluorescent microscopy and comet assay. According to qPCR study, the mecA (the antibiotic resistant gene) expression in MRSA was found to be down-regulated after C3 treatment. In contrast, C3 showed no hemolytic toxicity on human red blood cells which was confirmed by hemolytic assay. According to ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), 144 proteins were identified in C3 among which the majority belonged to Gram negative bacteria (45.8%). Altogether, our results will help to develop novel, cost-effective, non-toxic and highly efficient antibacterial medicines from natural sources against antibiotic resistant infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Humanos , Meticilina , Testes de Sensibilidade Microbiana , Solo
9.
Nanomaterials (Basel) ; 10(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316666

RESUMO

: In this study, the titanium-gadolinium quantum dots (TGQDs) were novel, first of its type to be synthesized, and fully characterized to date. Multiple physical characterization includes scanning electron microscopy (SEM), scanning electrochemical microscope (SCEM), x-ray fluorescence, spectrophotometry, and dynamic light scattering were carried out. The obtained results confirmed appropriate size and shape distributions in addition to processing optical features with high quantum yield. The synthesized TGQD was used as a fluorescent dye for bacterial detection and imaging by fluorescent microscopy and spectrophotometry, where TGQD stained only bacterial cells, but not human cells. The significant antibacterial activities of the TGQDs were found against a highly pathogenic bacterium (Staphylococcus aureus) and its antibiotic resistant strains (vancomycin and methicillin resistant Staphylococcus aureus) using growth curve analysis and determination of minimum inhibitory concentration (MIC) analysis. Live/dead cell imaging assay using phase-contrast microscope was performed for further confirmation of the antibacterial activity. Cell wall disruption and release of cell content was observed to be the prime mode of action with the reduction of cellular oxygen demand (OD).

10.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290291

RESUMO

The current epidemic of antibiotic-resistant infections urges to develop alternatives to less-effective antibiotics. To assess anti-bacterial potential, a novel coordinate compound (RU-S4) was synthesized using ruthenium-Schiff base-benzimidazole ligand, where ruthenium chloride was used as the central atom. RU-S4 was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Antibacterial effect of RU-S4 was studied against Staphylococcus aureus (NCTC 8511), vancomycin-resistant Staphylococcus aureus (VRSA) (CCM 1767), methicillin-resistant Staphylococcus aureus (MRSA) (ST239: SCCmecIIIA), and hospital isolate Staphylococcus epidermidis. The antibacterial activity of RU-S4 was checked by growth curve analysis and the outcome was supported by optical microscopy imaging and fluorescence LIVE/DEAD cell imaging. In vivo (balb/c mice) infection model prepared with VRSA (CCM 1767) and treated with RU-S4. In our experimental conditions, all infected mice were cured. The interaction of coordination compound with bacterial cells were further confirmed by cryo-scanning electron microscope (Cryo-SEM). RU-S4 was completely non-toxic against mammalian cells and in mice and subsequently treated with synthesized RU-S4.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutênio/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral Raman
11.
Nanomaterials (Basel) ; 10(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075033

RESUMO

Antibiotic-resistant bacterial infections have become global issues for public health, which increases the utter need to develop alternatives to antibiotics. Here, the HSER (Homo sapiens retinoic acid receptor) peptide was designed from retinoic acid receptor responder protein 2 of Homo sapiens, and was conjugated with synthesized CQDs (carbon quantum dots) for enhanced antibacterial activity in combination, as individually they are not highly effective. The HSER-CQDs were characterized using spectrophotometer, HPLC coupled with electrospray-ionization quadrupole time-of-flight mass spectrometer (ESI-qTOF) mass spectrometer, zeta potential, zeta size, and FTIR. Thereafter, the antibacterial activity against Vancomycin-Resistant Staphylococcus aureus (VRSA) and Escherichia coli (carbapenem resistant) was studied using growth curve analysis, further supported by microscopic images showing the presence of cell debris and dead bacterial cells. The antibacterial mechanism of HSER-CQDs was observed to be via cell wall disruption and also interaction with gDNA (genomic DNA). Finally, toxicity test against normal human epithelial cells showed no toxicity, confirmed by microscopic analysis. Thus, the HSER-CQDs conjugate, having high stability and low toxicity with prominent antibacterial activity, can be used as a potential antibacterial agent.

12.
Biomacromolecules ; 21(2): 418-434, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31738540

RESUMO

Minimization of drug side effects is a hallmark of advanced targeted therapy. Herein we describe the synthesis of polysaccharide-based nanocapsules prepared from furcellaran and chitosan via layer-by-layer deposition using electrostatic interaction. Using doxorubicin as a model drug, prepared nanocapsules showed excellent drug loading properties and release influence by pH and stability. Targeted delivery of doxorubicin was achieved by nanocapsule surface modification using homing peptide (seq SMSIARLC). The synthesized nanocapsules possess excellent compatibility to eukaryotic organisms. In the case of nonmalignant cells (PNT1A and HEK-293), toxicity tests revealed the absences of DNA fragmentation, apoptosis, necrosis, and also disruption of erythrocyte membranes. In contrast, results from treatment of malignant cell lines (MDA-MB-231 and PC3) indicate good anticancer effects of synthesized bionanomaterial. Internalization studies revealed the nanocapsule's ability to enter the malignant cell lines by endocytosis and triggering the apoptosis. The occurrence of apoptosis is mostly connected to the presence of ROS and inability of DNA damage reparation. Additionally, the obtained results strongly indicate that peptide modification increases the speed of nanocapsule internalization into malignant cell lines while simultaneously nonmalignant cell lines are untouched by nanocapsules highlighting the strong selectivity of the peptide.


Assuntos
Preparações de Ação Retardada , Doxorrubicina/farmacocinética , Nanocápsulas/química , Alginatos/química , Linhagem Celular Tumoral , Quitosana/química , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Feminino , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Nanocápsulas/administração & dosagem , Nanocápsulas/toxicidade , Peptídeos/química , Peptídeos/metabolismo , Gomas Vegetais/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Polieletrólitos/química , Testes de Toxicidade
13.
Nanomaterials (Basel) ; 9(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623115

RESUMO

The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel "green" route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.

14.
Talanta ; 205: 120111, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450441

RESUMO

Due to the close relationship between carcinogenesis and human papillomavirus (HPV), and since they are transmitted via huge number of asymptomatic carriers, the detection of HPV is really needed to reduce the risk of developing cancer. According to the best of our knowledge, our study provides the very first method for one-step detection of viral infection and if it has initiated the subsequent cancer proliferation. The proposed novel nanosystem consists of magnetic glass particles (MGPs), which were attached with DNA probe on their surface to hybridize with target DNAs. The MGP-probe-DNA hybrid was finally conjugated with CdTe/ZnSe core/shell quantum dots (QDs). The proposed detection system is based on a novel mechanism in which the MGPs separate out the target DNAs from different biological samples using external magnetic field for better and clear detection and the QDs give different fluorescent maxima for different target DNAs due to their ability to interact differently with different nucleotides. Firstly, the method was optimized using HPV genes cloned into synthetic plasmids. Then it was applied directly on the samples from normal and cancerous cells. After that, the real hospital samples of head and neck squamous cell carcinoma (HNSCC) with or without the infection of HPV were also analyzed. Our novel nano-system is proved successful in detecting and distinguishing between the patients suffering by HPV infection with or without subsequent cancer having detection limit estimated as 1.0 x 109 (GEq/mL). The proposed methodology is faster and cost-effective, which can be applied at the clinical level to help the doctors to decide the strategy of medication that may save the life of the patients with an early treatment.


Assuntos
DNA Viral/sangue , Infecções por Papillomavirus/diagnóstico , Pontos Quânticos/química , Adulto , Idoso , Técnicas Biossensoriais/métodos , Compostos de Cádmio/química , Linhagem Celular Tumoral , Sondas de DNA/química , Sondas de DNA/genética , DNA Viral/química , DNA Viral/genética , Vidro/química , Humanos , Limite de Detecção , Fenômenos Magnéticos , Masculino , Microscopia de Fluorescência/métodos , Hibridização de Ácido Nucleico , Papillomaviridae/química , Espectrometria de Fluorescência/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Telúrio/química
15.
J Control Release ; 307: 166-185, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226356

RESUMO

The ever increasing scenario of bacterial resistance against commonly available antibiotics is becoming a global threat of major concern, which necessitates the development of new strategies to overcome this hurdle. Conjugation of nanoparticles (NPs) with antimicrobial moieties, such as antibiotics, peptides or different biomolecules, has been one of the successful techniques in targeting antibiotic resistance. This review mainly focusses on the possible nanoparticle-drug conjugates with their activity against pathogenic bacterial infections. Nanoparticles play an array of roles, e.g. as a carrier, synergistically acting agent and as theranostic agent, henceforth facilitates the efficacy of therapy. Moreover, this review elaborates the studies with reported nanoparticles-drug conjugates that include their possible synthesis methodologies and applications. In most of the cases, the nanoparticles were found to increase the permeability of bacterial cell membrane, which enables higher uptake of antibiotics inside the bacterial cells which in return showed better effects. Even the conjugates were found to efficiently kill the antibiotic-resistant strains. Since several limitations are exerted by the biological systems, there is an urge for the advancement of nanoparticle-drug conjugates for better proficiency.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antibacterianos/química , Humanos , Nanopartículas/química
16.
J Hazard Mater ; 365: 932-941, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616304

RESUMO

Nanotechnology, new fascinating field of science, is bringing many application's options. However, it is necessary to understand their potential environmental risk and toxicity. Zinc selenide quantum dots (ZnSe QDs) are getting valuable due to wide industrial usage, mainly as cadmium free diodes or stabilizing ligand. Thanks to unique properties, they could also open the possibilities of application in the agriculture. Their effects on living organisms, including plants, are still unknown. Therefore, the attention of this work was given to antioxidant response of Arabidopsis thaliana to 100 and 250 µM ZnSe QDs foliar feeding. ZnSe QDs treatment had no statistically significant differences in morphology but led to increased antioxidant response in the leaves at the level of gene expression and production secondary antioxidant metabolites. Concurrently, analysis of growth properties of Agrobacterium tumefaciens was done. 250 µM ZnSe solution inhibited the Agrobacterium tumefaciens viability by 60%. This is the first mention about effect ZnSe QDs on the plants. Although QDs induced oxidative stress, the apply treatment dose of ZnSe QDs did not have significant toxic effect on the plants and even no morphological changes were observed. However, the same amount of ZnSe QD induced an inhibitory effect on Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Expressão Gênica , Metabolômica , Pontos Quânticos/toxicidade , Compostos de Selênio/administração & dosagem , Compostos de Zinco/administração & dosagem , Agrobacterium tumefaciens/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Compostos de Selênio/toxicidade , Compostos de Zinco/toxicidade
17.
Infect Drug Resist ; 11: 1807-1817, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349337

RESUMO

BACKGROUND: Increase in vancomycin (Van)-resistant bacterial strains including vancomycin-resistant Staphylococcus aureus (VRSA) and lack of new effective antibiotics have become a formidable health problem. MATERIALS AND METHODS: We designed a new conjugate composed of Van and a peptide Hecate (Hec; Van/Hec), and its potential antimicrobial activity was evaluated. RESULTS: Results from disk diffusion test, time-kill assay, determination of minimum inhibitory concentration (MIC), microscopy, and comet assay showed strong antimicrobial effects of Van/Hec against wild-type, methicillin-resistant Staphylococcus aureus (MRSA) and VRSA. Microscopy revealed that the exposure to Van/Hec results in disruption of bacterial cell integrity in all tested strains, which was not observed in case of Van or Hec alone. CONCLUSION: Overall, we showed that the preparation of conjugates from antibiotics and biologically active peptides could help us to overcome the limitation of the use of antibiotic in the treatment of infections caused by multidrug-resistant bacteria.

18.
ACS Appl Mater Interfaces ; 10(42): 35859-35868, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30264566

RESUMO

Despite the importance of cell membranes for maintenance of integrity of cellular structures, there is still a lack of methods that allow simple real-time visualization of their damage. Herein, we describe gadolinium-Schiff base-doped quantum dots (GdQDs)-based probes for a fast facile spatial labeling of membrane injuries. We found that GdQDs preferentially interact through electron-rich and hydrophobic residues with a specific sequence motif of NHE-RF2 scaffold protein, exposed upon membrane damage. Such interaction results in a fast formation of intensively fluorescent droplets with a higher resolution and in a much shorter time compared to immunofluorescence using organic dye. GdQDs have high stability, brightness, and considerable cytocompatibility, which enable their use in long-term experiments in living cultures. To the best of our knowledge, this is the first report, demonstrating a method allowing real-time monitoring of membrane damage and recovery without any special requirements for instrumentation. Because of intensive brightness and simple signal pattern, GdQDs allow easy examination of interactions between cellular membranes and cell-penetrating peptides or cytostatic drugs. We anticipate that the simple and flexible method will also facilitate the studies dealing with host-pathogen interactions.


Assuntos
Membrana Celular/patologia , Gadolínio/química , Pontos Quânticos/química , Bases de Schiff/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Peptídeos/química , Espectrometria de Fluorescência
19.
20.
Bioconjug Chem ; 29(9): 2954-2969, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30086240

RESUMO

Novicidin (NVC), is a membrane-penetrating peptide, which forms a stable complex with Zn-Schiff base with interesting antitumor selectivity. We studied NVC derivatives to determine functional roles of key amino acids in toxicity, helicity, and binding of the Zn-Schiff base complex. Trimmed derivatives highlighted the role of peptide length and helicity in toxicity and membrane penetration. The removal of Lys from position 1 and 2 strongly increases the ability to disrupt the membranes. The trimming of the N-terminal residues significantly increases the stability of peptide helicity enhancing penetrating properties. Gly residue derivatives undermined a role of peptide bending in membrane penetration and toxicity. After the substitution of the central Gly derivatives with Ile or Lys, the peptides retained toxicity. These results illustrate the minor role of central helix bending in NVC toxicity. Binding-site-peptide derivatives identified His residue as the sole Zn-Schiff base binding site and eliminated the role of other aromatic residues.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Bases de Schiff/química , Zinco/administração & dosagem , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Glicina/química , Humanos , Ligantes , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...