Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(5): 3283-3290, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38747715

RESUMO

The problem of signal desynchronization in passive imaging based on noise correlation for defect detection in elastic plates is investigated. Although a post-processing resynchronization process relying on the symmetry of noise correlation functions can be applied prior to the imaging algorithm, perfect synchronization might not be achieved experimentally. Effect of such residual synchronization errors on the defect detection performance is quantified as a function of their probability density function. A mathematical regularization process is then proposed to reduce the standard deviation of the resynchronization errors by a factor of N-1/N (N is the number of sensors), which results in a significant improvement in the detection performance. Finally, these theoretical results are validated through a simple flexural-wave propagation simulation.

2.
Ultrasonics ; 124: 106753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533587

RESUMO

Assessing corrosion is crucial in the petrochemical and marine industries. Usual ultrasonic methods based on pulse-echo and guided waves to detect corrosion lack of precision and struggle in structures with a complex shape. In this paper, a complementary and sensitive ultrasonic method based on coda wave interferometry is presented to detect and quantify thickness loss caused by saltwater corrosion of a steel sample. The method consists in exciting the sample and measuring periodically the scattered coda signal. Correlation of the coda signal with a reference taken for the sample initial state permits the monitoring of corrosion spread with a high accuracy. A laboratory experiment is conducted with two steel samples immersed in saltwater with coda and temperature measured simultaneously. One of the samples is protected from corrosion and is used as a control sample to determine the influence of temperature on the coda signals. It is shown that the coda signals on the corroded sample can be temperature-corrected using the temperature measurement only. A control sample is not needed. A good correlation is found between a parameter quantifying the stretching of the coda over time and the corrosion surface, which is monitored with a camera. Finally, a simple theoretical model of coda signal is proposed to quantify the real-time average corrosion rate during the experiment with a sub-micrometric precision. The estimated final average corrosion depth is validated by independent depth profile measurements. The uncertainties and sensitivity of the presented method are investigated.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35500075

RESUMO

Data transmission through solid metallic channels is recommended in certain industries where no other options are proposed, such as nuclear, aerospace, and smart vehicles. In addition to the Faraday shielding effect of electromagnetic waves, another issue related to damage presence due to mechanical loads exists. Severe damage in the transmission channel leads to signal loss at the receiver. For this sake, ultrasonic guided waves, such as Lamb waves, maybe a good substitute since they can propagate through long distances in solid metallic structures. The scope of this work is to build a reliable, reproducible, and high data-rate wireless communication experimental platform, using ultrasonic guided waves, through healthy and damaged plates for industrial usage. The target is to compensate at first for the effect of dispersion, reverberation, scattering, and boundary reflections for the healthy plate. The novelty of this work falls within the performance analysis of the demodulation algorithm based on cross-correlation combined with binary phase-shift keying (BPSK), using a finite-element simulation through healthy and damaged plates with different depths of symmetrical and asymmetrical notches (SN and AN) and steps based on the bit error percentage (BEP). Furthermore, another contribution related to the impact of multiple reflections and mode conversions caused by symmetrical and asymmetrical steps and notches is taken into account. After this, numerical results are validated using an ultrasonic guided wave experimental platform. Results based on BEP analysis prove that the algorithm has successfully compensated for the effect of dispersion and boundary reflections for the healthy plate and multiple reflections and mode conversions for the damaged ones. A highly effective data rate of up to 350 kb/s can be reached even in the presence of severe damage in the transmission channel.


Assuntos
Comunicação , Modelos Teóricos , Simulação por Computador
4.
J Acoust Soc Am ; 146(5): 3505, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31795643

RESUMO

In a reverberant cavity, when a noise field is sufficiently diffuse, the correlation of the signal measured by two sensors provides an estimation of the Green's function (GF) between them. Here, the convergence of this passive estimation in the case of elastic waves on thin plates is studied. A statistical approach is proposed, which relates the similarity between the cross correlation and the GF to the structural properties of the plate and the number of uncorrelated sources. The analysis is sustained by experimental results obtained on an aluminum plate. This study allows us to evaluate the efficiency of passive structural health monitoring of plate-like structures based on noise correlation. Finally, a most interesting finding shows an absolute upper bound of the signal-to-noise ratio for GF quality reconstruction: 4Ns/5, independently of the plate properties.

5.
J Acoust Soc Am ; 146(4): 2395, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671992

RESUMO

In this paper the authors present a baseline-free quantitative method for imaging corrosion flaws in thin plates. It only requires an embedded guided wave sensor network used in a fully passive way, i.e., without active emission of waves. This method is called passive guided wave tomography. The aim of this development is the use of this method for the structural health monitoring of critical structures with heavy limitations on both sensor's intrusiveness and diagnostic's reliability because it allows the use of sensors that cannot emit elastic waves such as fiber Bragg gratings, which are less intrusive than piezoelectric transducers. The idea consists in using passive methods in order to retrieve the impulse response from elastic diffuse fields-naturally present in structures-measured simultaneously between the sensors. In this paper, two passive methods are studied: the ambient noise cross-correlation and the passive inverse filter. Once all the impulse responses between the sensors are retrieved, they are used as input data to perform guided wave tomography.


Assuntos
Análise de Falha de Equipamento/métodos , Teste de Materiais/métodos , Tomografia/métodos , Acústica , Algoritmos , Processamento de Sinais Assistido por Computador , Som , Espectrografia do Som
6.
J Acoust Soc Am ; 144(3): 1198, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30424667

RESUMO

Guided elastic waves are often studied as an effective solution for Structural Health Monitoring (SHM) systems of plate-like structures thanks to the capacity to propagate on large distances. In typical applications such as monitoring delaminations in aircraft fuselage, a network made of piezoelectric transducer (PZT) is used to emit and receive such waves in the structure. Fiber Bragg grating (FBG) sensors on optical fibers are a promising alternative to PZT for guided waves measurements in practical applications due to the capacity for dense multiplexing and robustness with respect to the environment. However, unlike conventional PZT transducers, FBG sensors cannot emit waves. It is demonstrated here that FBG sensors can be used in combination with a passive diffuse noise cross-correlation technique in order to extract the coherent guided waves propagating between two sensors. This could lead to a system using only FBG sensors in the near future. The reconstructed signals can then be analyzed with usual guided waves algorithms, like in active SHM systems, keeping all the advantages of this kind of monitoring in terms of fine diagnosis. The experimental demonstration shown in this paper is performed at ultrasonic frequencies (20-100 kHz) typically used in guided waves based SHM systems showing the potential of the approach.

7.
J Acoust Soc Am ; 143(1): 460, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390733

RESUMO

The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.

8.
J Acoust Soc Am ; 140(1): 157, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475141

RESUMO

A statistical model is proposed to relate the scattering properties of a local heterogeneity in a plate to the statistical properties of scattered and reverberated flexural waves. The contribution of the heterogeneity is isolated through the computation of differential signals consisting of a subtraction of the signals recorded after and before introduction of the heterogeneity. The theoretical expression of the average reverberation envelope of these differential signals is obtained as a function of the scattering cross-section of the heterogeneity. Successful numerical and experimental validations in various cases of canonical heterogeneities with known scattering cross-sections are shown. These satisfying results offer a way to estimate the scattering cross-section of an unknown scatterer from the reverberated differential signals.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26276962

RESUMO

Passive listening methodology has been shown to be a practical and effective method for passive structural health monitoring. In this work, this approach is applied experimentally to monitor the occurrence of defects in thin aluminum plates. A correlation matrix is estimated from noise vibrations recorded on a transducer array. A defect is localized by applying a beamforming algorithm to the difference between the correlation matrices obtained with and without the defect. We successfully detect defects for different kinds of noise sources. Moreover, we show that this technique is robust to detect massive inclusions, holes, and cracks. With a vibrometer, we observe that the fidelity of the estimated transient responses strongly depends on the number of uncorrelated noise sources. Finally, we show that the defect is successfully localized even if the noise source distribution is not uniform, provided that it remains spatially stationary between the states with and without defect. A simple theoretical framework is proposed to interpret these results.

10.
J Acoust Soc Am ; 132(4): 2165-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039411

RESUMO

The point source response of a reverberant solid plate is modeled through a nonstationary Poisson process based on the image-source method. The theoretical expectation of the envelope is then derived, taking into account the dispersive nature of plate waves, and validated by numerical results. Least-square curve-fitting applied to an ensemble average over N realizations can then be used to identify useful parameters such as wave velocity, plate surface, or source-receiver distance. It is shown that even values of N down to 1 (no averaging) allow a satisfying identification. Application to the estimation of the source-receiver distance using a single sensor is finally highlighted to illustrate the promising potentialities of the measurement principle proposed.


Assuntos
Acústica/instrumentação , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Som , Simulação por Computador , Desenho de Equipamento , Análise de Fourier , Análise dos Mínimos Quadrados , Movimento (Física) , Análise Numérica Assistida por Computador , Distribuição de Poisson , Reprodutibilidade dos Testes , Espalhamento de Radiação , Vibração
11.
Ultrasonics ; 49(2): 202-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18801547

RESUMO

The aim of this work is to study the fundamental Lamb modes interaction with defects in isotropic plates. For these experimental investigations, symmetrical notches with various depths milled in aluminum plates are considered. Moreover, the incident Lamb wave of a specific mode is generated by means of two identical thin piezoceramic transducers placed at the opposite sides of the plate. The waves scattered by the notch are recorded with conventional transducers located on the plate surface in front and behind the defect. The selection of the A(0) or the S(0) modes is obtained by exciting the transducers with anti-phased or in-phased signals, respectively. Furthermore, a calibration process is investigated to correct errors caused by the presence of the receiver between the emitters and the defects. The power reflection and transmission coefficients are then obtained and the power balance is verified. Finally, these measurements are compared successfully with those obtained by a numerical method using the finite-element modeling described in a previous work.

12.
J Acoust Soc Am ; 124(6): 3521-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19206781

RESUMO

The work described in this paper is intended to present a simple and efficient way of modeling a full Lamb wave emission and reception system. The emitter behavior and the Lamb wave generation are predicted using a two-dimensional (2D) hybrid finite element-normal mode expansion model. Then the receiver electrical response is obtained from a finite element computation with prescribed displacements. A numerical correction is applied to the 2D results in order to account for the in-plane radiation divergence caused by the finite length of the emitter. The advantage of this modular approach is that realistic configurations can be simulated without performing cumbersome modeling and time-consuming computations. It also provides insight into the physical interpretation of the results. A good agreement is obtained between predicted and measured signals. The range of application of the method is discussed.


Assuntos
Acústica , Manufaturas , Teste de Materiais/métodos , Modelos Teóricos , Acústica/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Teste de Materiais/instrumentação , Reprodutibilidade dos Testes , Fatores de Tempo , Transdutores , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...