Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(12): e80336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367478

RESUMO

An amplifying role for oral epithelial cells (ECs) in Epstein-Barr Virus (EBV) infection has been postulated to explain oral viral shedding. However, while lytic or latent EBV infections of oro/nasopharyngeal ECs are commonly detected under pathological conditions, detection of EBV-infected ECs in healthy conditions is very rare. In this study, a simple non-surgical tissue sampling procedure was used to investigate EBV infection in the periodontal epithelium that surrounds and attaches teeth to the gingiva. Surprisingly, we observed that the gingival ECs of the periodontium (pECs) are commonly infected with EBV and may serve as an important oral reservoir of latently EBV-infected cells. We also found that the basal level of epithelial EBV-infection is significantly increased in chronic periodontitis, a common inflammatory disease that undermines the integrity of tooth-supporting tissues. Moreover, the level of EBV infection was found to correlate with disease severity. In inflamed tissues, EBV-infected pECs appear to be prone to apoptosis and to produce larger amounts of CCL20, a pivotal inflammatory chemokine that controls tissue infiltration by immune cells. Our discovery that the periodontal epithelium is a major site of latent EBV infection sheds a new light on EBV persistence in healthy carriers and on the role of this ubiquitous virus in periodontitis. Moreover, the identification of this easily accessible site of latent infection may encourage new approaches to investigate and monitor other EBV-associated disorders.


Assuntos
Periodontite Crônica/virologia , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/virologia , Gengiva/virologia , Periodonto/virologia , Idoso , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Cell Physiol ; 227(8): 3088-98, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22015593

RESUMO

Atp6v0a3 gene encodes for two alternative products, Tirc7 and a3 proteins, which are differentially expressed in activated T cells and resorbing osteoclasts, respectively. Tirc7 plays a central role in T cell activation, while a3 protein is critical for osteoclast-mediated bone matrix resorption. Based on the large body of evidences documenting the relationships between T cells and osteoclasts, we hypothesized that the extracellular C-terminus of Tirc7 protein could directly interact with osteoclast precursor cells. To address this issue, we performed the molecular cloning of a mouse Atp6v0a3 cDNA segment encoding the last 40 amino acids of Tirc7 protein, and we used this peptide as a ligand added to mouse osteoclast precursor cells. We evidenced that Tirc7-Cter peptide induced the differentiation of RAW264.7 cells into osteoclast-like cells, stimulated an autocrine/paracrine regulatory loop potentially involved in osteoclastic differentiation control, and strongly up-regulated F4/80 protein expression within multinucleated osteoclast-like cells. Using a mouse bone marrow-derived CD11b(+) cell line, or total bone marrow primary cells, we observed that similarly to Rankl, Tirc7-Cter peptide induced the formation of TRACP-positive large multinucleated cells. At last, using mouse primary monocytes purified from total bone marrow, we determined that Tirc7-Cter peptide induced the appearance of small multinucleated cells (3-4 nuclei), devoid of resorbing activity, and which displayed modulations of dendritic cell marker genes expression. In conclusion, we report for the first time on biological effects mediated by a peptide corresponding to the C-terminus of Tirc7 protein, which interfere with monocytic differentiation pathways.


Assuntos
Diferenciação Celular , Peptídeos/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Medula Óssea , Camundongos , Monócitos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Peptídeos/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
3.
Eur Cell Mater ; 20: 379-92, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21154244

RESUMO

We recently demonstrated that blood clotted around biphasic calcium phosphate (BCP) microparticles constituted a composite biomaterial that could be used for bone defect filling. In addition, we showed that mononuclear cells, i.e. monocytes and lymphocytes, play a central role in the osteogenic effect of this biomaterial. Hypothesizing that osteoclast progenitors could participate to the pro-osteogenic effect of mononuclear cells we observed previously, we focus on this population through the study of mouse monocyte/macrophage cells (RAW264.7 cell line), as well as human pre-osteoclastic cells derived from mononuclear hematopoietic progenitor cells (monocytes-enriched fraction from peripheral blood). Using monocyte-derived osteoclast progenitors cultured within plasma clot/BCP microparticles composite, we aimed in the present report at the elucidation of transcriptional profiles of genes related to osteoclastogenesis and to bone remodelling. For both human and mouse monocytes, real-time PCR experiments demonstrated that plasma clot/BCP scaffold potentiated the expression of marker genes of the osteoclast differentiation such as Nfactc1, Jdp2, Fra2, Tracp and Ctsk. By contrast, Mmp9 was induced in mouse but not in human cells, and Ctr expression was down regulated for both species. In addition, for both mouse and human precursors, osteoclastic differentiation was associated with a strong stimulation of VegfC and Sdf1 genes expression. At last, using field-emission scanning electron microscopy analysis, we observed the interactions between human monocytes and BCP microparticles. As a whole, we demonstrated that plasma clot/BCP microparticles composite provided monocytes with a suitable microenvironment allowing their osteoclastic differentiation, together with the production of pro-angiogenic and chemoattractant factors.


Assuntos
Sangue , Fosfatos de Cálcio , Durapatita , Monócitos/citologia , Osteoclastos/citologia , Animais , Coagulação Sanguínea , Remodelação Óssea , Diferenciação Celular , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Tamanho da Partícula , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...